IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42628-1.html
   My bibliography  Save this article

Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance

Author

Listed:
  • Chao Kong

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Xiaozhan Qu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Mingming Liu

    (University of Science and Technology of China)

  • Weiya Xu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Da Chen

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yanshen Zhang

    (University of Science and Technology of China)

  • Shan Zhang

    (University of Science and Technology of China)

  • Feng Zhu

    (University of Science and Technology of China)

  • Zhenbang Liu

    (University of Science and Technology of China)

  • Jianchao Li

    (South China University of Technology)

  • Chengdong Huang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Chao Wang

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and β-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.

Suggested Citation

  • Chao Kong & Xiaozhan Qu & Mingming Liu & Weiya Xu & Da Chen & Yanshen Zhang & Shan Zhang & Feng Zhu & Zhenbang Liu & Jianchao Li & Chengdong Huang & Chao Wang, 2023. "Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42628-1
    DOI: 10.1038/s41467-023-42628-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42628-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42628-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. James Nelson, 2003. "Adaptation of core mechanisms to generate cell polarity," Nature, Nature, vol. 422(6933), pages 766-774, April.
    2. Chun Tang & Charles D. Schwieters & G. Marius Clore, 2007. "Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR," Nature, Nature, vol. 449(7165), pages 1078-1082, October.
    3. Chengdong Huang & Paolo Rossi & Tomohide Saio & Charalampos G. Kalodimos, 2016. "Structural basis for the antifolding activity of a molecular chaperone," Nature, Nature, vol. 537(7619), pages 202-206, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Shuo Gu & Daniel-Adriano Silva & Luming Meng & Alexander Yue & Xuhui Huang, 2014. "Quantitatively Characterizing the Ligand Binding Mechanisms of Choline Binding Protein Using Markov State Model Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
    3. Daniel-Adriano Silva & Gregory R Bowman & Alejandro Sosa-Peinado & Xuhui Huang, 2011. "A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-11, May.
    4. Brian A Kidd & David Baker & Wendy E Thomas, 2009. "Computation of Conformational Coupling in Allosteric Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-10, August.
    5. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    6. Kai Wang & Shiyang Long & Pu Tian, 2015. "Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    7. Fabian Paul & Thomas R Weikl, 2016. "How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42628-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.