The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-41150-8
Download full text from publisher
References listed on IDEAS
- Nadinath B. Nillegoda & Janine Kirstein & Anna Szlachcic & Mykhaylo Berynskyy & Antonia Stank & Florian Stengel & Kristin Arnsburg & Xuechao Gao & Annika Scior & Ruedi Aebersold & D. Lys Guilbride & R, 2015. "Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation," Nature, Nature, vol. 524(7564), pages 247-251, August.
- Ofrah Faust & Meital Abayev-Avraham & Anne S. Wentink & Michael Maurer & Nadinath B. Nillegoda & Nir London & Bernd Bukau & Rina Rosenzweig, 2020. "HSP40 proteins use class-specific regulation to drive HSP70 functional diversity," Nature, Nature, vol. 587(7834), pages 489-494, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kristine F. R. Pobre-Piza & Melissa J. Mann & Ashley R. Flory & Linda M. Hendershot, 2022. "Mapping SP-C co-chaperone binding sites reveals molecular consequences of disease-causing mutations on protein maturation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
- Dezerae Cox & Ching-Seng Ang & Nadinath B. Nillegoda & Gavin E. Reid & Danny M. Hatters, 2022. "Hidden information on protein function in censuses of proteome foldedness," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Jaime Carrasco & Rosa Antón & Alejandro Valbuena & David Pantoja-Uceda & Mayur Mukhi & Rubén Hervás & Douglas V. Laurents & María Gasset & Javier Oroz, 2023. "Metamorphism in TDP-43 prion-like domain determines chaperone recognition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Eduardo Pinho Melo & Tasuku Konno & Ilaria Farace & Mosab Ali Awadelkareem & Lise R. Skov & Fernando Teodoro & Teresa P. Sancho & Adrienne W. Paton & James C. Paton & Matthew Fares & Pedro M. R. Paulo, 2022. "Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41150-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.