IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38404-w.html
   My bibliography  Save this article

Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family

Author

Listed:
  • Fanindra Kumar Deshmukh

    (Weizmann Institute of Science)

  • Gili Ben-Nissan

    (Weizmann Institute of Science)

  • Maya A. Olshina

    (Weizmann Institute of Science)

  • Maria G. Füzesi-Levi

    (Weizmann Institute of Science)

  • Caley Polkinghorn

    (Weizmann Institute of Science)

  • Galina Arkind

    (Weizmann Institute of Science)

  • Yegor Leushkin

    (Weizmann Institute of Science)

  • Irit Fainer

    (Weizmann Institute of Science)

  • Sarel J. Fleishman

    (Weizmann Institute of Science)

  • Dan Tawfik

    (Weizmann Institute of Science)

  • Michal Sharon

    (Weizmann Institute of Science)

Abstract

Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 β-subunit with attenuation of the complex’s three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome’s enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.

Suggested Citation

  • Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38404-w
    DOI: 10.1038/s41467-023-38404-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38404-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38404-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Haselbach & Jil Schrader & Felix Lambrecht & Fabian Henneberg & Ashwin Chari & Holger Stark, 2017. "Long-range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Remco Sprangers & Lewis E. Kay, 2007. "Quantitative dynamics and binding studies of the 20S proteasome by NMR," Nature, Nature, vol. 445(7128), pages 618-622, February.
    3. Indrajit Sahu & Sachitanand M. Mali & Prasad Sulkshane & Cong Xu & Andrey Rozenberg & Roni Morag & Manisha Priyadarsini Sahoo & Sumeet K. Singh & Zhanyu Ding & Yifan Wang & Sharleen Day & Yao Cong & O, 2021. "The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    4. Oren Moscovitz & Gili Ben-Nissan & Irit Fainer & Dan Pollack & Limor Mizrachi & Michal Sharon, 2015. "The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
    5. Ravit Netzer & Dina Listov & Rosalie Lipsh & Orly Dym & Shira Albeck & Orli Knop & Colin Kleanthous & Sarel J. Fleishman, 2018. "Ultrahigh specificity in a network of computationally designed protein-interaction pairs," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wai Tuck Soh & Hanna P. Roetschke & John A. Cormican & Bei Fang Teo & Nyet Cheng Chiam & Monika Raabe & Ralf Pflanz & Fabian Henneberg & Stefan Becker & Ashwin Chari & Haiyan Liu & Henning Urlaub & Ju, 2024. "Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing," Nature Communications, Nature, vol. 15(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wai Tuck Soh & Hanna P. Roetschke & John A. Cormican & Bei Fang Teo & Nyet Cheng Chiam & Monika Raabe & Ralf Pflanz & Fabian Henneberg & Stefan Becker & Ashwin Chari & Haiyan Liu & Henning Urlaub & Ju, 2024. "Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    2. Yuki Toyama & Ichio Shimada, 2024. "NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Julia Reichelt & Wiebke Sachs & Sarah Frömbling & Julia Fehlert & Maja Studencka-Turski & Anna Betz & Desiree Loreth & Lukas Blume & Susanne Witt & Sandra Pohl & Johannes Brand & Maire Czesla & Jan Kn, 2023. "Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Bintao He & Fa Zhang & Chenjie Feng & Jianyi Yang & Xin Gao & Renmin Han, 2024. "Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Xiangwei Wu & Yunxiang Du & Lu-Jun Liang & Ruichao Ding & Tianyi Zhang & Hongyi Cai & Xiaolin Tian & Man Pan & Lei Liu, 2024. "Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Gogulan Karunanithy & Vaibhav Kumar Shukla & D. Flemming Hansen, 2024. "Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38404-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.