IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54815-9.html
   My bibliography  Save this article

One-step gas-phase syntheses of few-layered single-phase Ti2NCl2 and Ti2CCl2 MXenes with high stabilities

Author

Listed:
  • Fen Yue

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Maoqiao Xiang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Jie Zheng

    (Chinese Academy of Sciences)

  • Jiuyi Zhu

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Jiake Wei

    (Chinese Academy of Sciences)

  • Puheng Yang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Hebang Shi

    (Chinese Academy of Sciences)

  • Qinghua Dong

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Wenjun Ding

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Chenchen Chen

    (Chinese Academy of Sciences)

  • Yafeng Yang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Chuanfang John Zhang

    (Sichuan University)

  • Huigang Zhang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Qingshan Zhu

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

With the iteration of etching techniques, MXenes have exhibited astounding accomplishments. Nevertheless, intricate procedures, expensive precursors, and degradation present obstacles for practical application. Although chemical vapor deposition has been developed as a solution, direct syntheses of few-layered single-phase MXenes remain an open challenge, especially for Ti2NCl2. Here, we propose a one-step gas-phase synthetic method to fabricate few-layered single-phase Ti2NCl2 and Ti2CCl2. Design of the activation section and segregation from the synthetic zone are the key factors. The reaction paths, synthetic mechanism, and degradation behavior are revealed. Due to the low proportion of Ti vacancies, the time constant of the Ti2CCl2 solution is 73 times longer than that of Ti2CClx. Furthermore, the specific capacity for Li+ storage with Ti2NCl2 is 1.37 times greater than that of Ti2CCl2. The one-step gas-phase method will accelerate practical application of MXenes.

Suggested Citation

  • Fen Yue & Maoqiao Xiang & Jie Zheng & Jiuyi Zhu & Jiake Wei & Puheng Yang & Hebang Shi & Qinghua Dong & Wenjun Ding & Chenchen Chen & Yafeng Yang & Chuanfang John Zhang & Huigang Zhang & Qingshan Zhu, 2024. "One-step gas-phase syntheses of few-layered single-phase Ti2NCl2 and Ti2CCl2 MXenes with high stabilities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54815-9
    DOI: 10.1038/s41467-024-54815-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54815-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54815-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Xia & Tyler S. Mathis & Meng-Qiang Zhao & Babak Anasori & Alei Dang & Zehang Zhou & Hyesung Cho & Yury Gogotsi & Shu Yang, 2018. "Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes," Nature, Nature, vol. 557(7705), pages 409-412, May.
    2. Zhiguo Du & Shubin Yang & Songmei Li & Jun Lou & Shuqing Zhang & Shuai Wang & Bin Li & Yongji Gong & Li Song & Xiaolong Zou & Pulickel M. Ajayan, 2020. "Conversion of non-van der Waals solids to 2D transition-metal chalcogenides," Nature, Nature, vol. 577(7791), pages 492-496, January.
    3. Guoliang Ma & Hui Shao & Jin Xu & Ying Liu & Qing Huang & Pierre-Louis Taberna & Patrice Simon & Zifeng Lin, 2021. "Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianze Zhang & Libo Chang & Xiaofeng Zhang & Hujie Wan & Na Liu & Liujiang Zhou & Xu Xiao, 2022. "Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    3. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Saxena, Shatakshi & Johnson, Michael & Dixit, Fuhar & Zimmermann, Karl & Chaudhuri, Shreya & Kaka, Fiyanshu & Kandasubramanian, Balasubramanian, 2023. "Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Zhang, Fan & Jia, Zirui & Wang, Chao & Feng, Ailing & Wang, Kuikui & Hou, Tianqi & Liu, Jiajia & Zhang, Yi & Wu, Guanglei, 2020. "Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery," Energy, Elsevier, vol. 195(C).
    6. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Shan, Pengyue & Bai, Xue & Jiang, Qi & Chen, Yunjian & Lu, Sen & Song, Pei & Jia, Zepeng & Xiao, Taiyang & Han, Yang & Wang, Yazhou & Liu, Tong & Cui, Hong & Feng, Rong & Kang, Qin & Liang, Zhiyong & , 2023. "Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts," Renewable Energy, Elsevier, vol. 203(C), pages 445-454.
    8. Tianzhu Zhou & Yangzhe Yu & Bing He & Zhe Wang & Ting Xiong & Zhixun Wang & Yanting Liu & Jiwu Xin & Miao Qi & Haozhe Zhang & Xuhui Zhou & Liheng Gao & Qunfeng Cheng & Lei Wei, 2022. "Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54815-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.