IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp445-454.html
   My bibliography  Save this article

Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts

Author

Listed:
  • Shan, Pengyue
  • Bai, Xue
  • Jiang, Qi
  • Chen, Yunjian
  • Lu, Sen
  • Song, Pei
  • Jia, Zepeng
  • Xiao, Taiyang
  • Han, Yang
  • Wang, Yazhou
  • Liu, Tong
  • Cui, Hong
  • Feng, Rong
  • Kang, Qin
  • Liang, Zhiyong
  • Yuan, Hongkuan

Abstract

We designed and screened bifunctional catalysts with good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance on bilayer MN4-O-MN4 structures with bridge-bonded oxygen ligands. The ORR and OER catalytic activities of 225 bilayer MN4-O-MN4 structures were explored in an accelerated manner by combining machine learning (ML) and density functional theory (DFT) calculations (DFT-ML). Based on the gradient boosted regression (GBR) algorithm, a series of efficient monofunctional and bifunctional electrocatalysts were successfully predicted with an average prediction error of only 0.04 V and 0.06 V for ORR and OER overpotential (η). ML successfully predicted that the overpotential of the monofunctional catalysts CoN4–O–RhN4 (ORR) and RhN4–O–AgN4 (OER) reached 0.34 V and 0.29 V, respectively; CoN4–O–AgN4 was considered the best bifunctional catalyst due to its overpotential of ηORR = 0.35 V and ηOER = 0.33 V on the bifunctional catalysts. Compared with DFT calculations, the DFT-ML accelerated calculation method resulted in a 9.4-fold improvement in catalyst screening speed. The performance prediction of 225 bilayer MN4-O-MN4 structures was used to screen out the potential bifunctional catalysts, thus providing guidance for the experimental synthesis of better performing bridge-bonded oxygen ligand catalysts.

Suggested Citation

  • Shan, Pengyue & Bai, Xue & Jiang, Qi & Chen, Yunjian & Lu, Sen & Song, Pei & Jia, Zepeng & Xiao, Taiyang & Han, Yang & Wang, Yazhou & Liu, Tong & Cui, Hong & Feng, Rong & Kang, Qin & Liang, Zhiyong & , 2023. "Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts," Renewable Energy, Elsevier, vol. 203(C), pages 445-454.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:445-454
    DOI: 10.1016/j.renene.2022.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Huilong Fei & Juncai Dong & M. Josefina Arellano-Jiménez & Gonglan Ye & Nam Dong Kim & Errol L.G. Samuel & Zhiwei Peng & Zhuan Zhu & Fan Qin & Jiming Bao & Miguel Jose Yacaman & Pulickel M. Ajayan & D, 2015. "Atomic cobalt on nitrogen-doped graphene for hydrogen generation," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    4. Zhiguo Du & Shubin Yang & Songmei Li & Jun Lou & Shuqing Zhang & Shuai Wang & Bin Li & Yongji Gong & Li Song & Xiaolong Zou & Pulickel M. Ajayan, 2020. "Conversion of non-van der Waals solids to 2D transition-metal chalcogenides," Nature, Nature, vol. 577(7791), pages 492-496, January.
    5. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    6. Xuefeng Zhang & Junjie Guo & Pengfei Guan & Chunjing Liu & Hao Huang & Fanghong Xue & Xinglong Dong & Stephen J. Pennycook & Matthew F. Chisholm, 2013. "Catalytically active single-atom niobium in graphitic layers," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    5. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    6. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    8. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    11. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    12. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    13. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    14. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    15. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    16. O. V. Mythreyi & M. Rohith Srinivaas & Tigga Amit Kumar & R. Jayaganthan, 2021. "Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718," Data, MDPI, vol. 6(8), pages 1-16, July.
    17. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    18. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    19. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    20. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:445-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.