IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v178y2023ics1364032123000941.html
   My bibliography  Save this article

Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact

Author

Listed:
  • Saxena, Shatakshi
  • Johnson, Michael
  • Dixit, Fuhar
  • Zimmermann, Karl
  • Chaudhuri, Shreya
  • Kaka, Fiyanshu
  • Kandasubramanian, Balasubramanian

Abstract

MXenes are currently a research hotspot in the field of 2D materials, hinting to revolutionize material technology. Their layered architecture allows for molecular intercalation, defect engineering, and surface band gap functionalization, with applications as diverse as energy storage and drinking water desalination. Its structural and functional integrity has prompted the scientific community to investigate novel compositions in an effort to leverage electrochemical activity, mechanical robustness, flexibility and environmental stability. However, the current synthesis routes present a bottleneck in proposing MXenes as a sustainable material for the future. Therefore, by expanding the reach of synthetic chemistry towards efficient strategies for green production, we present the first comprehensive introspection of the use of green solvents and their impact on material properties during MXene synthesis. This review is an attempt to quantify the intriguing characteristics of MXene nanocomposites by embracing design tools like the ‘iceberg model’. To further evaluate the performance of MXenes fabricated using green strategies (such as eutectic etching) we have made an attempt to critically compare them with conventional MXenes by examining surface characteristics, electrochemical analysis, charge transfer mechanisms etc. Conclusively, we aim to instigate concern about the environmental impact of MXene synthesis and instil a multidisciplinary approach to tailor environmentally benign, scalable and efficient MXene derivatives for commercial energy applications. The review provides an immersive account linking UN sustainable development goals with the industrial outlook of green MXenes, it highlights their impact on climate change, potential to build technically advanced economies, low cost production and range of applications.

Suggested Citation

  • Saxena, Shatakshi & Johnson, Michael & Dixit, Fuhar & Zimmermann, Karl & Chaudhuri, Shreya & Kaka, Fiyanshu & Kandasubramanian, Balasubramanian, 2023. "Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000941
    DOI: 10.1016/j.rser.2023.113238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123000941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wonsik Eom & Hwansoo Shin & Rohan B. Ambade & Sang Hoon Lee & Ki Hyun Lee & Dong Jun Kang & Tae Hee Han, 2020. "Large-scale wet-spinning of highly electroconductive MXene fibers," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Michael Ghidiu & Maria R. Lukatskaya & Meng-Qiang Zhao & Yury Gogotsi & Michel W. Barsoum, 2014. "Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance," Nature, Nature, vol. 516(7529), pages 78-81, December.
    3. James L. Hart & Kanit Hantanasirisakul & Andrew C. Lang & Babak Anasori & David Pinto & Yevheniy Pivak & J. Tijn Omme & Steven J. May & Yury Gogotsi & Mitra L. Taheri, 2019. "Control of MXenes’ electronic properties through termination and intercalation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Yu Xia & Tyler S. Mathis & Meng-Qiang Zhao & Babak Anasori & Alei Dang & Zehang Zhou & Hyesung Cho & Yury Gogotsi & Shu Yang, 2018. "Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes," Nature, Nature, vol. 557(7705), pages 409-412, May.
    5. Shuaihua Lu & Qionghua Zhou & Yixin Ouyang & Yilv Guo & Qiang Li & Jinlan Wang, 2018. "Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Dixit, Fuhar & Zimmermann, Karl & Alamoudi, Majed & Abkar, Leili & Barbeau, Benoit & Mohseni, Madjid & Kandasubramanian, Balasubramanian & Smith, Kevin, 2022. "Application of MXenes for air purification, gas separation and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianze Zhang & Libo Chang & Xiaofeng Zhang & Hujie Wan & Na Liu & Liujiang Zhou & Xu Xiao, 2022. "Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Brian C. Wyatt & Matthew G. Boebinger & Zachary D. Hood & Shiba Adhikari & Paweł Piotr Michałowski & Srinivasa Kartik Nemani & Murali Gopal Muraleedharan & Annabelle Bedford & Wyatt J. Highland & Paul, 2024. "Alkali cation stabilization of defects in 2D MXenes at ambient and elevated temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Dixit, Fuhar & Zimmermann, Karl & Alamoudi, Majed & Abkar, Leili & Barbeau, Benoit & Mohseni, Madjid & Kandasubramanian, Balasubramanian & Smith, Kevin, 2022. "Application of MXenes for air purification, gas separation and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Changjae Lee & Soon Mo Park & Soobin Kim & Yun-Seok Choi & Geonhyeong Park & Yun Chan Kang & Chong Min Koo & Seon Joon Kim & Dong Ki Yoon, 2022. "Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jeonghee Yeom & Ayoung Choe & Jiyun Lee & Jeeyoon Kim & Jinyoung Kim & Seung Hak Oh & Cheolhong Park & Sangyun Na & Young-Eun Shin & Youngoh Lee & Yun Goo Ro & Sang Kyu Kwak & Hyunhyub Ko, 2023. "Photosensitive ion channels in layered MXene membranes modified with plasmonic gold nanostars and cellulose nanofibers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Tianzhu Zhou & Yangzhe Yu & Bing He & Zhe Wang & Ting Xiong & Zhixun Wang & Yanting Liu & Jiwu Xin & Miao Qi & Haozhe Zhang & Xuhui Zhou & Liheng Gao & Qunfeng Cheng & Lei Wei, 2022. "Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Zhen Shen & Wei Chen & Hang Xu & Wen Yang & Qing Kong & Ao Wang & Mingmei Ding & Juan Shang, 2019. "Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    9. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Noor Afeefah Nordin & Mohamed Nainar Mohamed Ansari & Saifuddin M. Nomanbhay & Nasri A. Hamid & Nadia M. L. Tan & Zainudin Yahya & Izhan Abdullah, 2021. "Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review," Energies, MDPI, vol. 14(21), pages 1-20, November.
    11. Ke Li & Juan Zhao & Ainur Zhussupbekova & Christopher E. Shuck & Lucia Hughes & Yueyao Dong & Sebastian Barwich & Sebastien Vaesen & Igor V. Shvets & Matthias Möbius & Wolfgang Schmitt & Yury Gogotsi , 2022. "4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yongjiu Yuan & Xin Li & Lan Jiang & Misheng Liang & Xueqiang Zhang & Shouyu Wu & Junrui Wu & Mengyao Tian & Yang Zhao & Liangti Qu, 2023. "Laser maskless fast patterning for multitype microsupercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Xianhu Liu & Wenrui Zhang & Xin Zhang & Zhengui Zhou & Chunfeng Wang & Yamin Pan & Bin Hu & Chuntai Liu & Caofeng Pan & Changyu Shen, 2024. "Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UV-absorption for thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Omid Niksan & Lingyi Bi & Yury Gogotsi & Mohammad H. Zarifi, 2024. "MXene-based kirigami designs: showcasing reconfigurable frequency selectivity in microwave regime," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    17. Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    18. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    19. Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
    20. Zhang, Fan & Jia, Zirui & Wang, Chao & Feng, Ailing & Wang, Kuikui & Hou, Tianqi & Liu, Jiajia & Zhang, Yi & Wu, Guanglei, 2020. "Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:178:y:2023:i:c:s1364032123000941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.