IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301547.html
   My bibliography  Save this article

Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery

Author

Listed:
  • Zhang, Fan
  • Jia, Zirui
  • Wang, Chao
  • Feng, Ailing
  • Wang, Kuikui
  • Hou, Tianqi
  • Liu, Jiajia
  • Zhang, Yi
  • Wu, Guanglei

Abstract

Silicon has been regarded as a promising anode materials for lithium ion battery. However, large volume change during lithiation/delithiation process impedes its application for energy storage. Two-dimensional titanium carbide or carbonitride nanosheet, known as MXene, possesses layered-stacked structure and high electrical conductivity. So MXene has a great potential to improve the cycle life of silicon anode because its layered-stacked structure can accommodate the volume expansion of silicon. Herein, we present a facile process to prepare sandwich-like silicon/Ti3C2Tx MXene composite directed by electrostatic self-assembly. This unique architecture could accommodate silicon expansion during lithiation and enhance electronical conductivity. The silicon/Ti3C2Tx MXene composite delivers an initial reversible capacity of 1067.6 mAh g−1 at a current of 300 mA g−1. Moreover, it shows a steady cycling ability of 643.8 mAh g−1 at 300 mA g−1 after 100 cycles. This work may shed lights on the development of high energy density silicon-based anode materials for lithium ion battery.

Suggested Citation

  • Zhang, Fan & Jia, Zirui & Wang, Chao & Feng, Ailing & Wang, Kuikui & Hou, Tianqi & Liu, Jiajia & Zhang, Yi & Wu, Guanglei, 2020. "Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301547
    DOI: 10.1016/j.energy.2020.117047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2013. "Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes," Energy, Elsevier, vol. 61(C), pages 432-439.
    2. Yu Xia & Tyler S. Mathis & Meng-Qiang Zhao & Babak Anasori & Alei Dang & Zehang Zhou & Hyesung Cho & Yury Gogotsi & Shu Yang, 2018. "Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes," Nature, Nature, vol. 557(7705), pages 409-412, May.
    3. Fathabadi, Hassan, 2019. "Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle," Renewable Energy, Elsevier, vol. 130(C), pages 714-724.
    4. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jiasheng & Wang, Xuan Liang & Jin, En Mei & Moon, Seung-Guen & Jeong, Sang Mun, 2021. "Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries," Energy, Elsevier, vol. 222(C).
    2. Jin, En Mei & Kim, Min Soo & Kim, Tae Yun & Shin, Beom-Ju & Moon, Jong-Ho & Jeong, Sang Mun, 2023. "Upcycling of silicon scrap collected from photovoltaic cell manufacturing process for lithium-ion batteries via transferred arc thermal plasma," Energy, Elsevier, vol. 262(PB).
    3. Tang, Hong & Jiang, Mengjin & Ren, Erhui & Zhang, Yue & Lai, Xiaoxu & Cui, Ce & Jiang, Shouxiang & Zhou, Mi & Qin, Qin & Guo, Ronghui, 2020. "Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Jianqiang & Yan, Fuwu & Zhang, Pei & Du, Changqing, 2014. "Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency," Energy, Elsevier, vol. 70(C), pages 618-625.
    2. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    3. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    4. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    5. Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
    6. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    7. Fen Yue & Maoqiao Xiang & Jie Zheng & Jiuyi Zhu & Jiake Wei & Puheng Yang & Hebang Shi & Qinghua Dong & Wenjun Ding & Chenchen Chen & Yafeng Yang & Chuanfang John Zhang & Huigang Zhang & Qingshan Zhu, 2024. "One-step gas-phase syntheses of few-layered single-phase Ti2NCl2 and Ti2CCl2 MXenes with high stabilities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    9. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    10. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    11. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    12. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    13. Wang, Hongqiang & Li, Sha & Li, Dan & Chen, Zhixin & Liu, Hua Kun & Guo, Zaiping, 2014. "TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries," Energy, Elsevier, vol. 75(C), pages 597-602.
    14. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    15. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    16. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    17. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    18. Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
    19. Kvasha, Andriy & Gutiérrez, César & Osa, Urtzi & de Meatza, Iratxe & Blazquez, J. Alberto & Macicior, Haritz & Urdampilleta, Idoia, 2018. "A comparative study of thermal runaway of commercial lithium ion cells," Energy, Elsevier, vol. 159(C), pages 547-557.
    20. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.