IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54723-y.html
   My bibliography  Save this article

The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR

Author

Listed:
  • Cauã Antunes Westmann

    (Winterthurerstrasse 190
    Quartier Sorge-Batiment Genopode)

  • Leander Goldbach

    (Winterthurerstrasse 190
    Quartier Sorge-Batiment Genopode)

  • Andreas Wagner

    (Winterthurerstrasse 190
    Quartier Sorge-Batiment Genopode
    The Santa Fe Institute)

Abstract

Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor. The elevation at that location corresponds to the strength of transcriptional regulation conveyed by the sequence. Here, we develop an in vivo massively parallel reporter assay to map the landscape of bacterial TFBSs. We apply this assay to the TetR repressor, for which few TFBSs are known. We quantify the strength of transcriptional repression for 17,765 TFBSs and show that the resulting landscape is highly rugged, with 2092 peaks. Only a few peaks convey stronger repression than the wild type. Non-additive (epistatic) interactions between mutations are frequent. Despite these hallmarks of ruggedness, most high peaks are evolutionarily accessible. They have large basins of attraction and are reached by around 20% of populations evolving on the landscape. Which high peak is reached during evolution is unpredictable and contingent on the mutational path taken. This in-depth analysis of a prokaryotic gene regulator reveals a landscape that is navigable but much more rugged than the landscapes of eukaryotic regulators.

Suggested Citation

  • Cauã Antunes Westmann & Leander Goldbach & Andreas Wagner, 2024. "The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54723-y
    DOI: 10.1038/s41467-024-54723-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54723-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54723-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Hochberg & Pablo Marquet & Robert Boyd & Andreas Wagner, 2017. "Innovation: an emerging focus from cells to societies," Post-Print hal-02006395, HAL.
    2. ., 2006. "Generalised genotype-phenotype maps," Chapters, in: Innovation, Evolution and Complexity Theory, chapter 3, pages 32-47, Edward Elgar Publishing.
    3. Dave W. Anderson & Florian Baier & Gloria Yang & Nobuhiko Tokuriki, 2021. "The adaptive landscape of a metallo-enzyme is shaped by environment-dependent epistasis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Timothy Fuqua & Jeff Jordan & Maria Elize Breugel & Aliaksandr Halavatyi & Christian Tischer & Peter Polidoro & Namiko Abe & Albert Tsai & Richard S. Mann & David L. Stern & Justin Crocker, 2020. "Dense and pleiotropic regulatory information in a developmental enhancer," Nature, Nature, vol. 587(7833), pages 235-239, November.
    5. Weissman, Daniel B. & Desai, Michael M. & Fisher, Daniel S. & Feldman, Marcus W., 2009. "The rate at which asexual populations cross fitness valleys," Theoretical Population Biology, Elsevier, vol. 75(4), pages 286-300.
    6. Schuster, Peter, 2009. "Genotypes and Phenotypes in the Evolution of Molecules," European Review, Cambridge University Press, vol. 17(2), pages 281-319, May.
    7. Eeshit Dhaval Vaishnav & Carl G. Boer & Jennifer Molinet & Moran Yassour & Lin Fan & Xian Adiconis & Dawn A. Thompson & Joshua Z. Levin & Francisco A. Cubillos & Aviv Regev, 2022. "The evolution, evolvability and engineering of gene regulatory DNA," Nature, Nature, vol. 603(7901), pages 455-463, March.
    8. Bennett Levitan & Stuart Kauffman, 1995. "Adaptive Walks with Noisy Fitness Measurements," Working Papers 95-04-039, Santa Fe Institute.
    9. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    10. Yuan-Jyue Chen & Christopher N. Takahashi & Lee Organick & Callista Bee & Siena Dumas Ang & Patrick Weiss & Bill Peck & Georg Seelig & Luis Ceze & Karin Strauss, 2020. "Quantifying molecular bias in DNA data storage," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    2. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    3. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    5. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    8. Friederike Wall, 2024. "Incomplete incentive contracts in complex task environments: an agent-based simulation with minimal intelligence agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(3), pages 523-552, July.
    9. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    10. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    12. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    14. Osmond, Matthew M. & Otto, Sarah P., 2015. "Fitness-valley crossing with generalized parent–offspring transmission," Theoretical Population Biology, Elsevier, vol. 105(C), pages 1-16.
    15. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    19. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54723-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.