IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v587y2020i7833d10.1038_s41586-020-2816-5.html
   My bibliography  Save this article

Dense and pleiotropic regulatory information in a developmental enhancer

Author

Listed:
  • Timothy Fuqua

    (European Molecular Biology Laboratory
    EMBL and Faculty of Biosciences Heidelberg University)

  • Jeff Jordan

    (Janelia Research Campus)

  • Maria Elize Breugel

    (European Molecular Biology Laboratory)

  • Aliaksandr Halavatyi

    (European Molecular Biology Laboratory)

  • Christian Tischer

    (European Molecular Biology Laboratory)

  • Peter Polidoro

    (Janelia Research Campus)

  • Namiko Abe

    (Columbia University)

  • Albert Tsai

    (European Molecular Biology Laboratory)

  • Richard S. Mann

    (Columbia University)

  • David L. Stern

    (Janelia Research Campus)

  • Justin Crocker

    (European Molecular Biology Laboratory)

Abstract

Changes in gene regulation underlie much of phenotypic evolution1. However, our understanding of the potential for regulatory evolution is biased, because most evidence comes from either natural variation or limited experimental perturbations2. Using an automated robotics pipeline, we surveyed an unbiased mutation library for a developmental enhancer in Drosophila melanogaster. We found that almost all mutations altered gene expression and that parameters of gene expression—levels, location, and state—were convolved. The widespread pleiotropic effects of most mutations may constrain the evolvability of developmental enhancers. Consistent with these observations, comparisons of diverse Drosophila larvae revealed apparent biases in the phenotypes influenced by the enhancer. Developmental enhancers may encode a higher density of regulatory information than has been appreciated previously, imposing constraints on regulatory evolution.

Suggested Citation

  • Timothy Fuqua & Jeff Jordan & Maria Elize Breugel & Aliaksandr Halavatyi & Christian Tischer & Peter Polidoro & Namiko Abe & Albert Tsai & Richard S. Mann & David L. Stern & Justin Crocker, 2020. "Dense and pleiotropic regulatory information in a developmental enhancer," Nature, Nature, vol. 587(7833), pages 235-239, November.
  • Handle: RePEc:nat:nature:v:587:y:2020:i:7833:d:10.1038_s41586-020-2816-5
    DOI: 10.1038/s41586-020-2816-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2816-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2816-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueying C. Li & Lautaro Gandara & Måns Ekelöf & Kerstin Richter & Theodore Alexandrov & Justin Crocker, 2024. "Rapid response of fly populations to gene dosage across development and generations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:587:y:2020:i:7833:d:10.1038_s41586-020-2816-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.