IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23943-x.html
   My bibliography  Save this article

The adaptive landscape of a metallo-enzyme is shaped by environment-dependent epistasis

Author

Listed:
  • Dave W. Anderson

    (University of British Columbia
    University of Calgary)

  • Florian Baier

    (University of British Columbia)

  • Gloria Yang

    (University of British Columbia)

  • Nobuhiko Tokuriki

    (University of British Columbia)

Abstract

Enzymes can evolve new catalytic activity when environmental changes present them with novel substrates. Despite this seemingly straightforward relationship, factors other than the direct catalytic target can also impact adaptation. Here, we characterize the catalytic activity of a recently evolved bacterial methyl-parathion hydrolase for all possible combinations of the five functionally relevant mutations under eight different laboratory conditions (in which an alternative divalent metal is supplemented). The resultant adaptive landscapes across this historical evolutionary transition vary in terms of both the number of “fitness peaks” as well as the genotype(s) at which they are found as a result of genotype-by-environment interactions and environment-dependent epistasis. This suggests that adaptive landscapes may be fluid and molecular adaptation is highly contingent not only on obvious factors (such as catalytic targets), but also on less obvious secondary environmental factors that can direct it towards distinct outcomes.

Suggested Citation

  • Dave W. Anderson & Florian Baier & Gloria Yang & Nobuhiko Tokuriki, 2021. "The adaptive landscape of a metallo-enzyme is shaped by environment-dependent epistasis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23943-x
    DOI: 10.1038/s41467-021-23943-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23943-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23943-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yeonwoo Park & Brian P. H. Metzger & Joseph W. Thornton, 2024. "The simplicity of protein sequence-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Christos S. Karamitros & Kyle Murray & Yoichi Kumada & Kenneth A. Johnson & Sheena D’Arcy & George Georgiou, 2024. "Mechanistic conformational and substrate selectivity profiles emerging in the evolution of enzymes via parallel trajectories," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23943-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.