IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54183-4.html
   My bibliography  Save this article

The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms

Author

Listed:
  • Tang Cam Phung Pham

    (University of Copenhagen
    University of Copenhagen)

  • Steffen Henning Raun

    (University of Copenhagen)

  • Essi Havula

    (University of Helsinki)

  • Carlos Henriquez-Olguín

    (University of Copenhagen
    Universidad Finis Terrae)

  • Diana Rubalcava-Gracia

    (Karolinska Institutet)

  • Emma Frank

    (University of Copenhagen)

  • Andreas Mæchel Fritzen

    (University of Copenhagen
    University of Copenhagen)

  • Paulo R. Jannig

    (Karolinska Institutet)

  • Nicoline Resen Andersen

    (University of Copenhagen)

  • Rikke Kruse

    (Odense University Hospital)

  • Mona Sadek Ali

    (University of Copenhagen)

  • Andrea Irazoki

    (University of Copenhagen)

  • Jens Frey Halling

    (University of Copenhagen)

  • Stine Ringholm

    (University of Copenhagen)

  • Elise J. Needham

    (University of Sydney)

  • Solvejg Hansen

    (University of Copenhagen)

  • Anders Krogh Lemminger

    (University of Copenhagen)

  • Peter Schjerling

    (Bispebjerg Hospital
    University of Copenhagen)

  • Maria Houborg Petersen

    (Odense University Hospital)

  • Martin Eisemann Almeida

    (Odense University Hospital
    University of Southern Denmark)

  • Thomas Elbenhardt Jensen

    (University of Copenhagen)

  • Bente Kiens

    (University of Copenhagen)

  • Morten Hostrup

    (University of Copenhagen)

  • Steen Larsen

    (University of Copenhagen
    Bispebjerg Hospital
    University of Copenhagen
    Medical University of Bialystok)

  • Niels Ørtenblad

    (University of Southern Denmark)

  • Kurt Højlund

    (Odense University Hospital
    University of Southern Denmark)

  • Michael Kjær

    (Bispebjerg Hospital
    University of Copenhagen)

  • Jorge L. Ruas

    (Karolinska Institutet)

  • Aleksandra Trifunovic

    (University of Cologne)

  • Jørgen Frank Pind Wojtaszewski

    (University of Copenhagen)

  • Joachim Nielsen

    (University of Southern Denmark)

  • Klaus Qvortrup

    (University of Copenhagen)

  • Henriette Pilegaard

    (University of Copenhagen)

  • Erik Arne Richter

    (University of Copenhagen)

  • Lykke Sylow

    (University of Copenhagen
    University of Copenhagen)

Abstract

Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle. Exercise training effectively counteracts mitochondrial defects caused by genetically-induced LRPPRC/SLIRP loss, despite sustained low mtDNA-encoded-mRNA pools, by increasing mitoribosome translation capacity and mitochondrial quality control. In humans, exercise training robustly increases muscle SLIRP and LRPPRC protein across exercise modalities and sexes, yet less prominently in individuals with type 2 diabetes. SLIRP muscle loss reduces Drosophila lifespan. Our data points to a mechanism of post-transcriptional mitochondrial regulation in muscle via mitochondrial mRNA stabilization, offering insights into how exercise enhances mitoribosome capacity and mitochondrial quality control to alleviate defects.

Suggested Citation

  • Tang Cam Phung Pham & Steffen Henning Raun & Essi Havula & Carlos Henriquez-Olguín & Diana Rubalcava-Gracia & Emma Frank & Andreas Mæchel Fritzen & Paulo R. Jannig & Nicoline Resen Andersen & Rikke Kr, 2024. "The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54183-4
    DOI: 10.1038/s41467-024-54183-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54183-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54183-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary T. Couvillion & Iliana C. Soto & Gergana Shipkovenska & L. Stirling Churchman, 2016. "Synchronized mitochondrial and cytosolic translation programs," Nature, Nature, vol. 533(7604), pages 499-503, May.
    2. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    3. Riekelt H. Houtkooper & Laurent Mouchiroud & Dongryeol Ryu & Norman Moullan & Elena Katsyuba & Graham Knott & Robert W. Williams & Johan Auwerx, 2013. "Mitonuclear protein imbalance as a conserved longevity mechanism," Nature, Nature, vol. 497(7450), pages 451-457, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Wang & Qian Zhang & Yayun Jiang & Jun Zhou & Ye Tian, 2024. "ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    4. Eun-Ji Park & Hyun-Soo Kim & Do-Hyoung Lee & Su-Min Kim & Joon-Sup Yoon & Ji-Min Lee & Se Jin Im & Ho Lee & Min-Woo Lee & Chang-Woo Lee, 2023. "Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Abdul Haseeb Khan & Xuefang Gu & Rutvik J. Patel & Prabha Chuphal & Matheus P. Viana & Aidan I. Brown & Brian M. Zid & Tatsuhisa Tsuboi, 2024. "Mitochondrial protein heterogeneity stems from the stochastic nature of co-translational protein targeting in cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    9. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Rune B Jakobsen & Esben Østrup & Xiaolan Zhang & Tarjei S Mikkelsen & Jan E Brinchmann, 2014. "Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    15. Beatrice T. Laudenbach & Karsten Krey & Quirin Emslander & Line Lykke Andersen & Alexander Reim & Pietro Scaturro & Sarah Mundigl & Christopher Dächert & Katrin Manske & Markus Moser & Janos Ludwig & , 2021. "NUDT2 initiates viral RNA degradation by removal of 5′-phosphates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. McNutt Patrick & Gut Ian & Hubbard Kyle & Beske Phil, 2015. "A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 227-241, June.
    17. Elena Grahn & Svenja V. Kaufmann & Malika Askarova & Momchil Ninov & Luisa M. Welp & Thomas K. Berger & Henning Urlaub & U.Benjamin Kaupp, 2023. "Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Erik. T. Frank & Lucie Kesner & Joanito Liberti & Quentin Helleu & Adria C. LeBoeuf & Andrei Dascalu & Douglas B. Sponsler & Fumika Azuma & Evan P. Economo & Patrice Waridel & Philipp Engel & Thomas S, 2023. "Targeted treatment of injured nestmates with antimicrobial compounds in an ant society," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Marzieh Marzbany & Fatemeh Ghassemi & Mahsa Rasekhian, 2019. "Application of the 3'-Untranslated Region of Messenger RNA from Measles Virus Matrix Protein as an RNA Stabilizer: Implications in Pharmaceutical Biotechnology," Journal of Molecular Biology Research, Canadian Center of Science and Education, vol. 9(1), pages 1-53, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54183-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.