IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36836-y.html
   My bibliography  Save this article

Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation

Author

Listed:
  • Eun-Ji Park

    (Sungkyunkwan University School of Medicine)

  • Hyun-Soo Kim

    (Sungkyunkwan University School of Medicine)

  • Do-Hyoung Lee

    (Sungkyunkwan University School of Medicine)

  • Su-Min Kim

    (Sungkyunkwan University School of Medicine)

  • Joon-Sup Yoon

    (Sungkyunkwan University School of Medicine)

  • Ji-Min Lee

    (Soonchunhyang University)

  • Se Jin Im

    (Sungkyunkwan University School of Medicine)

  • Ho Lee

    (Research Institute, National Cancer Center)

  • Min-Woo Lee

    (Soonchunhyang University)

  • Chang-Woo Lee

    (Sungkyunkwan University School of Medicine
    Sungkyunkwan University)

Abstract

Brown adipose tissue (BAT) plays a pivotal role in maintaining body temperature and energy homeostasis. BAT dysfunction is associated with impaired metabolic health. Here, we show that Ssu72 phosphatase is essential for mRNA translation of genes required for thermogenesis in BAT. Ssu72 is found to be highly expressed in BAT among adipose tissue depots, and the expression level of Ssu72 is increased upon acute cold exposure. Mice lacking adipocyte Ssu72 exhibit cold intolerance during acute cold exposure. Mechanistically, Ssu72 deficiency alters cytosolic mRNA translation program through hyperphosphorylation of eIF2α and reduces translation of mitochondrial oxidative phosphorylation (OXPHOS) subunits, resulting in mitochondrial dysfunction and defective thermogenesis in BAT. In addition, metabolic dysfunction in Ssu72-deficient BAT returns to almost normal after restoring Ssu72 expression. In summary, our findings demonstrate that cold-responsive Ssu72 phosphatase is involved in cytosolic translation of key thermogenic effectors via dephosphorylation of eIF2α in brown adipocytes, providing insights into metabolic benefits of Ssu72.

Suggested Citation

  • Eun-Ji Park & Hyun-Soo Kim & Do-Hyoung Lee & Su-Min Kim & Joon-Sup Yoon & Ji-Min Lee & Se Jin Im & Ho Lee & Min-Woo Lee & Chang-Woo Lee, 2023. "Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36836-y
    DOI: 10.1038/s41467-023-36836-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36836-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36836-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary T. Couvillion & Iliana C. Soto & Gergana Shipkovenska & L. Stirling Churchman, 2016. "Synchronized mitochondrial and cytosolic translation programs," Nature, Nature, vol. 533(7604), pages 499-503, May.
    2. Kazuhiro Ikeda & Sachiko Shiba & Kuniko Horie-Inoue & Kunitoshi Shimokata & Satoshi Inoue, 2013. "A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    3. Miao Wang & Randal J. Kaufman, 2016. "Protein misfolding in the endoplasmic reticulum as a conduit to human disease," Nature, Nature, vol. 529(7586), pages 326-335, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jie Chen & Jeffrey Knupp & Anoop Arunagiri & Leena Haataja & Peter Arvan & Billy Tsai, 2021. "PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Iqbal Dulloo & Peace Atakpa-Adaji & Yi-Chun Yeh & Clémence Levet & Sonia Muliyil & Fangfang Lu & Colin W. Taylor & Matthew Freeman, 2022. "iRhom pseudoproteases regulate ER stress-induced cell death through IP3 receptors and BCL-2," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Li Qi jun, 2018. "TG could Modulate FPN1 in MES 23.5 Cells by Hepcidin," International Journal of Sciences, Office ijSciences, vol. 7(09), pages 52-55, September.
    5. Ami Kobayashi & Kotaro Azuma & Toshihiko Takeiwa & Toshimori Kitami & Kuniko Horie & Kazuhiro Ikeda & Satoshi Inoue, 2023. "A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36836-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.