IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006299.html
   My bibliography  Save this article

Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias

Author

Listed:
  • Ming Bo Cai
  • Nicolas W Schuck
  • Jonathan W Pillow
  • Yael Niv

Abstract

The activity of neural populations in the brains of humans and animals can exhibit vastly different spatial patterns when faced with different tasks or environmental stimuli. The degrees of similarity between these neural activity patterns in response to different events are used to characterize the representational structure of cognitive states in a neural population. The dominant methods of investigating this similarity structure first estimate neural activity patterns from noisy neural imaging data using linear regression, and then examine the similarity between the estimated patterns. Here, we show that this approach introduces spurious bias structure in the resulting similarity matrix, in particular when applied to fMRI data. This problem is especially severe when the signal-to-noise ratio is low and in cases where experimental conditions cannot be fully randomized in a task. We propose Bayesian Representational Similarity Analysis (BRSA), an alternative method for computing representational similarity, in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data. By marginalizing over the unknown activity patterns, we can directly estimate this covariance structure from imaging data. This method offers significant reductions in bias and allows estimation of neural representational similarity with previously unattained levels of precision at low signal-to-noise ratio, without losing the possibility of deriving an interpretable distance measure from the estimated similarity. The method is closely related to Pattern Component Model (PCM), but instead of modeling the estimated neural patterns as in PCM, BRSA models the imaging data directly and is suited for analyzing data in which the order of task conditions is not fully counterbalanced. The probabilistic framework allows for jointly analyzing data from a group of participants. The method can also simultaneously estimate a signal-to-noise ratio map that shows where the learned representational structure is supported more strongly. Both this map and the learned covariance matrix can be used as a structured prior for maximum a posteriori estimation of neural activity patterns, which can be further used for fMRI decoding. Our method therefore paves the way towards a more unified and principled analysis of neural representations underlying fMRI signals. We make our tool freely available in Brain Imaging Analysis Kit (BrainIAK).Author summary: We show the severity of the bias introduced when performing representational similarity analysis (RSA) based on neural activity pattern estimated within imaging runs. Our Bayesian RSA method significantly reduces the bias and can learn a shared representational structure across multiple participants. We also demonstrate its extension as a new multi-class decoding tool.

Suggested Citation

  • Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
  • Handle: RePEc:plo:pcbi00:1006299
    DOI: 10.1371/journal.pcbi.1006299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006299
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    3. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    4. Kendrick N. Kay & Thomas Naselaris & Ryan J. Prenger & Jack L. Gallant, 2008. "Identifying natural images from human brain activity," Nature, Nature, vol. 452(7185), pages 352-355, March.
    5. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Antonino Greco & Julia Moser & Hubert Preissl & Markus Siegel, 2024. "Predictive learning shapes the representational geometry of the human brain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    4. Agustin Lage-Castellanos & Giancarlo Valente & Elia Formisano & Federico De Martino, 2019. "Methods for computing the maximum performance of computational models of fMRI responses," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    5. Máté Aller & Agoston Mihalik & Uta Noppeney, 2022. "Audiovisual adaptation is expressed in spatial and decisional codes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    7. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    8. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    9. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    10. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    11. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    13. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    14. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    15. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    17. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    18. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    19. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    20. Ivan Mihál & Eva Luptáková & Martin Pavlík, 2021. "Wood-inhabiting macromycete communities in spruce stands on former agricultural land," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-65.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.