IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53867-1.html
   My bibliography  Save this article

Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis

Author

Listed:
  • Tomáš David

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Miroslava Šedinová

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Aneta Myšková

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
    University of Chemistry and Technology Prague)

  • Jaroslav Kuneš

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
    Czech Academy of Sciences)

  • Lenka Maletínská

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Radek Pohl

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Martin Dračínský

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Helena Mertlíková-Kaiserová

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Karel Čížek

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Blanka Klepetářová

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Miroslava Litecká

    (Institute of Inorganic Chemistry, Czech Academy of Sciences)

  • Antonín Kaňa

    (University of Chemistry and Technology Prague)

  • David Sýkora

    (University of Chemistry and Technology Prague)

  • Adam Jaroš

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Michal Straka

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

  • Miloslav Polasek

    (Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences)

Abstract

Coordination compounds of lanthanides are indispensable in biomedical applications as MRI contrast agents and radiotherapeutics. However, since the introduction of the chelator DOTA four decades ago, there has been only limited progress on improving their thermodynamic stability and kinetic inertness, which are essential for safe in vivo use. Here, we present ClickZip, an innovative synthetic strategy employing a coordination-templated formation of a 1,5-triazole bridge that improves kinetic inertness up to a million-fold relative to DOTA, expanding utility of lanthanide chelates beyond traditional uses. Acting as unique mass tags, the ClickZip chelates can be released from (biological) samples by acidic hydrolysis, chromatographically distinguished from interfering lanthanide species, and sensitively detected by mass spectrometry. Lanthanides enclosed in ClickZip chelates are chemically almost indistinguishable, providing a more versatile alternative to chemically identical isotopic labels for multiplexed analysis. The bioanalytical potential is demonstrated on tagged cell-penetrating peptides in vitro, and anti-obesity prolactin-releasing peptides in vivo.

Suggested Citation

  • Tomáš David & Miroslava Šedinová & Aneta Myšková & Jaroslav Kuneš & Lenka Maletínská & Radek Pohl & Martin Dračínský & Helena Mertlíková-Kaiserová & Karel Čížek & Blanka Klepetářová & Miroslava Liteck, 2024. "Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53867-1
    DOI: 10.1038/s41467-024-53867-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53867-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53867-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Doroschak & Karen Zhang & Melissa Queen & Aishwarya Mandyam & Karin Strauss & Luis Ceze & Jeff Nivala, 2020. "Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Thomas J. Clough & Lijun Jiang & Ka-Leung Wong & Nicholas J. Long, 2019. "Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Lixiong Dai & Chloe M. Jones & Wesley Ting Kwok Chan & Tiffany A. Pham & Xiaoxi Ling & Eric M. Gale & Nicholas J. Rotile & William Chi-Shing Tai & Carolyn J. Anderson & Peter Caravan & Ga-Lai Law, 2018. "Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Jan Kretschmer & Tomáš David & Martin Dračínský & Ondřej Socha & Daniel Jirak & Martin Vít & Radek Jurok & Martin Kuchař & Ivana Císařová & Miloslav Polasek, 2022. "Paramagnetic encoding of molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Elad Goren & Liat Avram & Amnon Bar-Shir, 2021. "Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Hao Shi & Qiaojuan Shi & Benjamin Grodner & Joan Sesing Lenz & Warren R. Zipfel & Ilana Lauren Brito & Iwijn De Vlaminck, 2020. "Highly multiplexed spatial mapping of microbial communities," Nature, Nature, vol. 588(7839), pages 676-681, December.
    7. Elisabeth Kreidt & Wolfgang Leis & Michael Seitz, 2020. "Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kretschmer & Tomáš David & Martin Dračínský & Ondřej Socha & Daniel Jirak & Martin Vít & Radek Jurok & Martin Kuchař & Ivana Císařová & Miloslav Polasek, 2022. "Paramagnetic encoding of molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Miski Aghnia Khairinisa & Winda Ariyani & Yoshito Tsushima & Noriyuki Koibuchi, 2021. "Effects of Gadolinium Deposits in the Cerebellum: Reviewing the Literature from In Vitro Laboratory Studies to In Vivo Human Investigations," IJERPH, MDPI, vol. 18(14), pages 1-12, July.
    4. Jabadurai Jayapaul & Sanna Komulainen & Vladimir V. Zhivonitko & Jiří Mareš & Chandan Giri & Kari Rissanen & Perttu Lantto & Ville-Veikko Telkki & Leif Schröder, 2022. "Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Anne Swartjes & Paul B. White & Jeroen P. J. Bruekers & Johannes A. A. W. Elemans & Roeland J. M. Nolte, 2022. "Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Xiaofan Jin & Feiqiao B. Yu & Jia Yan & Allison M. Weakley & Veronika Dubinkina & Xiandong Meng & Katherine S. Pollard, 2023. "Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Natalia Sauer & Wojciech Szlasa & Laura Jonderko & Krystyna Głowacka & Katarzyna Karłowicz-Bodalska & Anna Wiela-Hojeńska, 2022. "Contrast Media Adverse Drug Reactions in Highly Polluted Environment," IJERPH, MDPI, vol. 19(12), pages 1-13, June.
    8. Xuyang Zhao & Junyao Li & Qingyuan Fan & Jing Dai & Yanping Long & Ronghui Liu & Jixian Zhai & Qing Pan & Yi Li, 2024. "Composite Hedges Nanopores codec system for rapid and portable DNA data readout with high INDEL-Correction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Ufuk Kilic & Matthew Hilfiker & Shawn Wimer & Alexander Ruder & Eva Schubert & Mathias Schubert & Christos Argyropoulos, 2024. "Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Adam Kuzdraliński & Marek Miśkiewicz & Hubert Szczerba & Wojciech Mazurczyk & Jeff Nivala & Bogdan Księżopolski, 2023. "Unlocking the potential of DNA-based tagging: current market solutions and expanding horizons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Junyoung Seo & Yeonbo Sim & Jeewon Kim & Hyunwoo Kim & In Cho & Hoyeon Nam & Young-Gyu Yoon & Jae-Byum Chang, 2022. "PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53867-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.