IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30811-9.html
   My bibliography  Save this article

Paramagnetic encoding of molecules

Author

Listed:
  • Jan Kretschmer

    (Institute of Organic Chemistry and Biochemistry of the CAS
    Charles University in Prague)

  • Tomáš David

    (Institute of Organic Chemistry and Biochemistry of the CAS)

  • Martin Dračínský

    (Institute of Organic Chemistry and Biochemistry of the CAS)

  • Ondřej Socha

    (Institute of Organic Chemistry and Biochemistry of the CAS)

  • Daniel Jirak

    (Institute for Clinical and Experimental Medicine
    Charles University in Prague)

  • Martin Vít

    (Institute for Clinical and Experimental Medicine
    Technical University of Liberec)

  • Radek Jurok

    (University of Chemistry and Technology Prague
    University of Chemistry and Technology Prague)

  • Martin Kuchař

    (University of Chemistry and Technology Prague
    National Institute of Mental Health)

  • Ivana Císařová

    (Charles University in Prague)

  • Miloslav Polasek

    (Institute of Organic Chemistry and Biochemistry of the CAS)

Abstract

Contactless digital tags are increasingly penetrating into many areas of human activities. Digitalization of our environment requires an ever growing number of objects to be identified and tracked with machine-readable labels. Molecules offer immense potential to serve for this purpose, but our ability to write, read, and communicate molecular code with current technology remains limited. Here we show that magnetic patterns can be synthetically encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital code into molecules and their mixtures. Owing to the directional character of magnetic susceptibility tensors, each sequence of lanthanides built into one molecule produces a unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of codes that grows double-exponentially with the number of available paramagnetic ions. The codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum, analogously to the macroscopic technology of RF identification. A prototype molecular system capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in drug discovery, anti-counterfeiting and other areas.

Suggested Citation

  • Jan Kretschmer & Tomáš David & Martin Dračínský & Ondřej Socha & Daniel Jirak & Martin Vít & Radek Jurok & Martin Kuchař & Ivana Císařová & Miloslav Polasek, 2022. "Paramagnetic encoding of molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30811-9
    DOI: 10.1038/s41467-022-30811-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30811-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30811-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Doroschak & Karen Zhang & Melissa Queen & Aishwarya Mandyam & Karin Strauss & Luis Ceze & Jeff Nivala, 2020. "Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. K. S. Cujia & J. M. Boss & K. Herb & J. Zopes & C. L. Degen, 2019. "Tracking the precession of single nuclear spins by weak measurements," Nature, Nature, vol. 571(7764), pages 230-233, July.
    3. Elad Goren & Liat Avram & Amnon Bar-Shir, 2021. "Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Alex M. Valm & Sarah Cohen & Wesley R. Legant & Justin Melunis & Uri Hershberg & Eric Wait & Andrew R. Cohen & Michael W. Davidson & Eric Betzig & Jennifer Lippincott-Schwartz, 2017. "Applying systems-level spectral imaging and analysis to reveal the organelle interactome," Nature, Nature, vol. 546(7656), pages 162-167, June.
    5. Jian Zhang & Jinxin Wang & Chang Wei & Yanfang Wang & Guanyu Xie & Yongfang Li & Mao Li, 2020. "Rapidly sequence-controlled electrosynthesis of organometallic polymers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Christopher E. Arcadia & Eamonn Kennedy & Joseph Geiser & Amanda Dombroski & Kady Oakley & Shui-Ling Chen & Leonard Sprague & Mustafa Ozmen & Jason Sello & Peter M. Weber & Sherief Reda & Christopher , 2020. "Multicomponent molecular memory," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Hao Shi & Qiaojuan Shi & Benjamin Grodner & Joan Sesing Lenz & Warren R. Zipfel & Ilana Lauren Brito & Iwijn De Vlaminck, 2020. "Highly multiplexed spatial mapping of microbial communities," Nature, Nature, vol. 588(7839), pages 676-681, December.
    8. Elisabeth Kreidt & Wolfgang Leis & Michael Seitz, 2020. "Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junyoung Seo & Yeonbo Sim & Jeewon Kim & Hyunwoo Kim & In Cho & Hoyeon Nam & Young-Gyu Yoon & Jae-Byum Chang, 2022. "PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Chaoran Xu & Congze He & Ning Li & Shicheng Yang & Yuxuan Du & Krzysztof Matyjaszewski & Xiangcheng Pan, 2021. "Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Archibald Enninful & Alev Baysoy & Rong Fan, 2022. "Unmixing for ultra-high-plex fluorescence imaging," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    4. Chao Pan & S. Kasra Tabatabaei & S. M. Hossein Tabatabaei Yazdi & Alvaro G. Hernandez & Charles M. Schroeder & Olgica Milenkovic, 2022. "Rewritable two-dimensional DNA-based data storage with machine learning reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Lingbo Xing & Jie Li & Yuchen Bai & Yuxuan Lin & Lianghong Xiao & Changlin Li & Dahui Zhao & Yongfeng Wang & Qiwei Chen & Jing Liu & Kai Wu, 2024. "Surface-confined alternating copolymerization with molecular precision by stoichiometric control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Raja Chouket & Agnès Pellissier-Tanon & Aliénor Lahlou & Ruikang Zhang & Diana Kim & Marie-Aude Plamont & Mingshu Zhang & Xi Zhang & Pingyong Xu & Nicolas Desprat & Dominique Bourgeois & Agathe Espagn, 2022. "Extra kinetic dimensions for label discrimination," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Güneş Parlakgül & Song Pang & Leonardo L. Artico & Nina Min & Erika Cagampan & Reyna Villa & Renata L. S. Goncalves & Grace Yankun Lee & C. Shan Xu & Gökhan S. Hotamışlıgil & Ana Paula Arruda, 2024. "Spatial mapping of hepatic ER and mitochondria architecture reveals zonated remodeling in fasting and obesity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Alexandre Santinho & Maxime Carpentier & Julio Lopes Sampaio & Mohyeddine Omrane & Abdou Rachid Thiam, 2024. "Giant organelle vesicles to uncover intracellular membrane mechanics and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Nell Saunders & Blandine Monel & Nadège Cayet & Lorenzo Archetti & Hugo Moreno & Alexandre Jeanne & Agathe Marguier & Julian Buchrieser & Timothy Wai & Olivier Schwartz & Mathieu Fréchin, 2024. "Dynamic label-free analysis of SARS-CoV-2 infection reveals virus-induced subcellular remodeling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Jabadurai Jayapaul & Sanna Komulainen & Vladimir V. Zhivonitko & Jiří Mareš & Chandan Giri & Kari Rissanen & Perttu Lantto & Ville-Veikko Telkki & Leif Schröder, 2022. "Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Anne Swartjes & Paul B. White & Jeroen P. J. Bruekers & Johannes A. A. W. Elemans & Roeland J. M. Nolte, 2022. "Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Cátia Silva Janota & Andreia Pinto & Anna Pezzarossa & Pedro Machado & Judite Costa & Pedro Campinho & Cláudio A. Franco & Edgar R. Gomes, 2022. "Shielding of actin by the endoplasmic reticulum impacts nuclear positioning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Xiaofan Jin & Feiqiao B. Yu & Jia Yan & Allison M. Weakley & Veronika Dubinkina & Xiandong Meng & Katherine S. Pollard, 2023. "Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Jonas Meinel & Vadim Vorobyov & Ping Wang & Boris Yavkin & Mathias Pfender & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Ren-Bao Liu & J. Wrachtrup, 2022. "Quantum nonlinear spectroscopy of single nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Adam Kuzdraliński & Marek Miśkiewicz & Hubert Szczerba & Wojciech Mazurczyk & Jeff Nivala & Bogdan Księżopolski, 2023. "Unlocking the potential of DNA-based tagging: current market solutions and expanding horizons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Nikolaos Mougios & Elena R. Cotroneo & Nils Imse & Jonas Setzke & Silvio O. Rizzoli & Nadja A. Simeth & Roman Tsukanov & Felipe Opazo, 2024. "NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Noble Kumar Talari & Ushodaya Mattam & Niroj Kumar Meher & Arun Kumar Paripati & Kalyankar Mahadev & Thanuja Krishnamoorthy & Naresh Babu V. Sepuri, 2023. "Lipid-droplet associated mitochondria promote fatty-acid oxidation through a distinct bioenergetic pattern in male Wistar rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30811-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.