IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29406-1.html
   My bibliography  Save this article

Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts

Author

Listed:
  • Anne Swartjes

    (Radboud University)

  • Paul B. White

    (Radboud University)

  • Jeroen P. J. Bruekers

    (Radboud University)

  • Johannes A. A. W. Elemans

    (Radboud University)

  • Roeland J. M. Nolte

    (Radboud University)

Abstract

Paramagnetic metallohost systems can bind guest molecules and find application as biomimetic catalysts. Due to the presence of the paramagnetic metal center, rigorous characterization of these systems by NMR spectroscopy can be very difficult. We report here that metallohost-guest systems can be studied by using the paramagnetic relaxation enhancement (PRE) effect. Manganese(III) porphyrin cage compounds are shown through their PRE to thread and bind viologen guests, including a polymeric one. The binding constants and dethreading activation parameters are lower than those of the metal-free porphyrin cage compounds, which is proposed to be a result of charge repulsion of the trivalent metal center and dicationic viologen guest. The threading rate of the manganese(III) porphyrin cage onto the polymer is more than 10 times faster than that of the non-metallated one, which is ascribed to initial binding of the cage to the polymer chain prior to threading, and to an entron effect.

Suggested Citation

  • Anne Swartjes & Paul B. White & Jeroen P. J. Bruekers & Johannes A. A. W. Elemans & Roeland J. M. Nolte, 2022. "Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29406-1
    DOI: 10.1038/s41467-022-29406-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29406-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29406-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pall Thordarson & Edward J. A. Bijsterveld & Alan E. Rowan & Roeland J. M. Nolte, 2003. "Epoxidation of polybutadiene by a topologically linked catalyst," Nature, Nature, vol. 424(6951), pages 915-918, August.
    2. Elad Goren & Liat Avram & Amnon Bar-Shir, 2021. "Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabadurai Jayapaul & Sanna Komulainen & Vladimir V. Zhivonitko & Jiří Mareš & Chandan Giri & Kari Rissanen & Perttu Lantto & Ville-Veikko Telkki & Leif Schröder, 2022. "Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jan Kretschmer & Tomáš David & Martin Dračínský & Ondřej Socha & Daniel Jirak & Martin Vít & Radek Jurok & Martin Kuchař & Ivana Císařová & Miloslav Polasek, 2022. "Paramagnetic encoding of molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Tomáš David & Miroslava Šedinová & Aneta Myšková & Jaroslav Kuneš & Lenka Maletínská & Radek Pohl & Martin Dračínský & Helena Mertlíková-Kaiserová & Karel Čížek & Blanka Klepetářová & Miroslava Liteck, 2024. "Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29406-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.