IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42361-9.html
   My bibliography  Save this article

Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing

Author

Listed:
  • Rui Chen

    (Xiamen University)

  • Tao Luo

    (Xiamen University)

  • Jincheng Wang

    (Xiamen University)

  • Renpeng Wang

    (Xiamen University)

  • Chen Zhang

    (Xiamen University)

  • Yu Xie

    (Xiamen University)

  • Lifeng Qin

    (Xiamen University)

  • Haimin Yao

    (The Hong Kong Polytechnic University, Hung Hom)

  • Wei Zhou

    (Xiamen University)

Abstract

Flexible pressure sensors are indispensable components in various applications such as intelligent robots and wearable devices, whereas developing flexible pressure sensors with both high sensitivity and wide linear range remains a great challenge. Here, we present an elegant strategy to address this challenge by taking advantage of a pyramidal carbon foam array as the sensing layer and an elastomer spacer as the stiffness regulator, realizing an unprecedentedly high sensitivity of 24.6 kPa−1 and an ultra-wide linear range of 1.4 MPa together. Such a wide range of linearity is attributed to the synergy between the nonlinear piezoresistivity of the sensing layer and the nonlinear elasticity of the stiffness regulator. The great application potential of our sensor in robotic manipulation, healthcare monitoring, and human-machine interface is demonstrated. Our design strategy can be extended to the other types of flexible sensors calling for both high sensitivity and wide-range linearity, facilitating the development of high-performance flexible pressure sensors for intelligent robotics and wearable devices.

Suggested Citation

  • Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42361-9
    DOI: 10.1038/s41467-023-42361-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42361-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42361-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa Y. Chen & Benjamin C. -K. Tee & Alex L. Chortos & Gregor Schwartz & Victor Tse & Darren J. Lipomi & H. -S. Philip Wong & Michael V. McConnell & Zhenan Bao, 2014. "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    2. Tao Jin & Zhongda Sun & Long Li & Quan Zhang & Minglu Zhu & Zixuan Zhang & Guangjie Yuan & Tao Chen & Yingzhong Tian & Xuyan Hou & Chengkuo Lee, 2020. "Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Jinhui Zhang & Haimin Yao & Jiaying Mo & Songyue Chen & Yu Xie & Shenglin Ma & Rui Chen & Tao Luo & Weisong Ling & Lifeng Qin & Zuankai Wang & Wei Zhou, 2022. "Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Uikyum Kim & Dawoon Jung & Heeyoen Jeong & Jongwoo Park & Hyun-Mok Jung & Joono Cheong & Hyouk Ryeol Choi & Hyunmin Do & Chanhun Park, 2021. "Integrated linkage-driven dexterous anthropomorphic robotic hand," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Xiu-man Wang & Lu-qi Tao & Min Yuan & Ze-ping Wang & Jiabing Yu & Dingli Xie & Feng Luo & Xianping Chen & ChingPing Wong, 2021. "Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Subramanian Sundaram & Petr Kellnhofer & Yunzhu Li & Jun-Yan Zhu & Antonio Torralba & Wojciech Matusik, 2019. "Learning the signatures of the human grasp using a scalable tactile glove," Nature, Nature, vol. 569(7758), pages 698-702, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxiao Wang & Xueyong Wei & Junli Shi & Ningning Bai & Xiao Wan & Bing Li & Yingchun Chen & Zhuangde Jiang & Chuan Fei Guo, 2024. "High-resolution flexible iontronic skins for both negative and positive pressure measurement in room temperature wind tunnel applications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    4. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Bekir Aksoy & Yufei Hao & Giulio Grasso & Krishna Manaswi Digumarti & Vito Cacucciolo & Herbert Shea, 2022. "Shielded soft force sensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yongjun Xiao & Chao Guo & Qingdong Zeng & Zenggang Xiong & Yunwang Ge & Wenqing Chen & Jun Wan & Bo Wang, 2021. "Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos," Sustainability, MDPI, vol. 13(8), pages 1-10, April.
    7. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Kyeonghee Lim & Jakyoung Lee & Sumin Kim & Myoungjae Oh & Chin Su Koh & Hunkyu Seo & Yeon-Mi Hong & Won Gi Chung & Jiuk Jang & Jung Ah Lim & Hyun Ho Jung & Jang-Ung Park, 2024. "Interference haptic stimulation and consistent quantitative tactility in transparent electrotactile screen with pressure-sensitive transistors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Mengjiao Li & Hong-Wei Lu & Shu-Wei Wang & Rei-Ping Li & Jiann-Yeu Chen & Wen-Shuo Chuang & Feng-Shou Yang & Yen-Fu Lin & Chih-Yen Chen & Ying-Chih Lai, 2022. "Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Nan Li & Yingxin Zhou & Yuqing Li & Chunwei Li & Wentao Xiang & Xueqing Chen & Pan Zhang & Qi Zhang & Jun Su & Bohao Jin & Huize Song & Cai Cheng & Minghui Guo & Lei Wang & Jing Liu, 2024. "Transformable 3D curved high-density liquid metal coils – an integrated unit for general soft actuation, sensing and communication," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Qian Mao & Zijian Liao & Jinfeng Yuan & Rong Zhu, 2024. "Multimodal tactile sensing fused with vision for dexterous robotic housekeeping," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yuanxi Zhang & Chengfeng Pan & Pengfei Liu & Lelun Peng & Zhouming Liu & Yuanyuan Li & Qingyuan Wang & Tong Wu & Zhe Li & Carmel Majidi & Lelun Jiang, 2023. "Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Jayraj V. Vaghasiya & Carmen C. Mayorga-Martinez & Jan Vyskočil & Martin Pumera, 2023. "Black phosphorous-based human-machine communication interface," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Haitao Yang & Shuo Ding & Jiahao Wang & Shuo Sun & Ruphan Swaminathan & Serene Wen Ling Ng & Xinglong Pan & Ghim Wei Ho, 2024. "Computational design of ultra-robust strain sensors for soft robot perception and autonomy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Shuyun Zhuo & Cheng Song & Qinfeng Rong & Tianyi Zhao & Mingjie Liu, 2022. "Shape and stiffness memory ionogels with programmable pressure-resistance response," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42361-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.