IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53701-8.html
   My bibliography  Save this article

Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers

Author

Listed:
  • Shengyuan Chang

    (The Pennsylvania State University)

  • Lidan Zhang

    (The Pennsylvania State University)

  • Yao Duan

    (The Pennsylvania State University)

  • Md Tarek Rahman

    (The Pennsylvania State University)

  • Abrar Islam

    (The Pennsylvania State University)

  • Xingjie Ni

    (The Pennsylvania State University)

Abstract

Achieving achromaticity across the visible light spectrum is crucial for metalenses in imaging systems. Single-layer metalenses struggle with weak focusing power or small aperture sizes due to inadequate group delay control. Multilayer metalenses offer some improvement but come with increased design and fabrication complexity. Here, we demonstrate a strategy using meta-atoms with material layers engineered for matching dispersion, allowing large and fine adjustments of group delay. Our design substantially broadens the group delay range, allowing us to experimentally demonstrate several polarization-independent metalenses operating across the entire visible spectrum (400-700 nm). We design, fabricate, and characterize achromatic metalenses with aperture diameters of 16 μm, 66 μm, 200 μm, and 400 μm, and numerical apertures of 0.27, 0.11, 0.04, and 0.02, respectively. Among them, the 400-μm diameter, 0.02-numerical-aperture metalens is used to demonstrate full-color imaging capabilities. Our results exhibit diffraction-limited performance, high efficiency, and accurate full-color image reproduction.

Suggested Citation

  • Shengyuan Chang & Lidan Zhang & Yao Duan & Md Tarek Rahman & Abrar Islam & Xingjie Ni, 2024. "Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53701-8
    DOI: 10.1038/s41467-024-53701-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53701-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53701-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuming Wang & Pin Chieh Wu & Vin-Cent Su & Yi-Chieh Lai & Cheng Hung Chu & Jia-Wern Chen & Shen-Hung Lu & Ji Chen & Beibei Xu & Chieh-Hsiung Kuan & Tao Li & Shining Zhu & Din Ping Tsai, 2017. "Broadband achromatic optical metasurface devices," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Ori Avayu & Euclides Almeida & Yehiam Prior & Tal Ellenbogen, 2017. "Composite functional metasurfaces for multispectral achromatic optics," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. F. Balli & M. Sultan & Sarah K. Lami & J. T. Hastings, 2020. "A hybrid achromatic metalens," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Wei Ting Chen & Alexander Y. Zhu & Jared Sisler & Zameer Bharwani & Federico Capasso, 2019. "A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Yujie Wang & Qinmiao Chen & Wenhong Yang & Ziheng Ji & Limin Jin & Xing Ma & Qinghai Song & Alexandra Boltasseva & Jiecai Han & Vladimir M. Shalaev & Shumin Xiao, 2021. "High-efficiency broadband achromatic metalens for near-IR biological imaging window," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Jin Yao & Fangxing Lai & Yubin Fan & Yuhan Wang & Shih-Hsiu Huang & Borui Leng & Yao Liang & Rong Lin & Shufan Chen & Mu Ku Chen & Pin Chieh Wu & Shumin Xiao & Din Ping Tsai, 2024. "Nonlocal meta-lens with Huygens’ bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Huan Lu & Jiwei Zhao & Bin Zheng & Chao Qian & Tong Cai & Erping Li & Hongsheng Chen, 2023. "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Aleksandr Barulin & Yeseul Kim & Dong Kyo Oh & Jaehyuck Jang & Hyemi Park & Junsuk Rho & Inki Kim, 2024. "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhipeng Yu & Huanhao Li & Wannian Zhao & Po-Sheng Huang & Yu-Tsung Lin & Jing Yao & Wenzhao Li & Qi Zhao & Pin Chieh Wu & Bo Li & Patrice Genevet & Qinghua Song & Puxiang Lai, 2024. "High-security learning-based optical encryption assisted by disordered metasurface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jitao Ji & Jian Li & Zhizhang Wang & Xueyun Li & Jiacheng Sun & Junyi Wang & Bin Fang & Chen Chen & Xin Ye & Shining Zhu & Tao Li, 2024. "On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Shih-Hsiu Huang & Hsiu-Ping Su & Chao-Yun Chen & Yu-Chun Lin & Zijin Yang & Yuzhi Shi & Qinghua Song & Pin Chieh Wu, 2024. "Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Xiujuan Zou & Youming Zhang & Ruoyu Lin & Guangxing Gong & Shuming Wang & Shining Zhu & Zhenlin Wang, 2022. "Pixel-level Bayer-type colour router based on metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Mengjun Liu & Ruizhi Yang & Zhenghao Guo & Kexu Chen & Haoqiang Feng & Han Lu & Shijian Huang & Minmin Zhang & Huapeng Ye & Lingling Shui, 2024. "Dynamic photomask directed lithography based on electrically stimulated nematic liquid crystal architectures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Chia-Hsiang Lin & Shih-Hsiu Huang & Ting-Hsuan Lin & Pin Chieh Wu, 2023. "Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Ethan Tseng & Shane Colburn & James Whitehead & Luocheng Huang & Seung-Hwan Baek & Arka Majumdar & Felix Heide, 2021. "Neural nano-optics for high-quality thin lens imaging," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53701-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.