IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44407-4.html
   My bibliography  Save this article

Dual-wavelength metalens enables Epi-fluorescence detection from single molecules

Author

Listed:
  • Aleksandr Barulin

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Yeseul Kim

    (Pohang University of Science and Technology (POSTECH))

  • Dong Kyo Oh

    (Pohang University of Science and Technology (POSTECH))

  • Jaehyuck Jang

    (Pohang University of Science and Technology (POSTECH)
    POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics)

  • Hyemi Park

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Junsuk Rho

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics
    National Institute of Nanomaterials Technology (NINT))

  • Inki Kim

    (Sungkyunkwan University
    Sungkyunkwan University)

Abstract

Single molecule fluorescence spectroscopy is at the heart of molecular biophysics research and the most sensitive biosensing assays. The growing demand for precision medicine and environmental monitoring requires the creation of miniaturized and portable sensing platforms. However, the need for highly sophisticated objective lenses has precluded the development of single molecule detection systems for truly portable devices. Here, we propose a dielectric metalens device of submicrometer thickness to excite and collect light from fluorescent molecules instead of an objective lens. The high numerical aperture, high focusing efficiency, and dual-wavelength operation of the metalens enable the implementation of fluorescence correlation spectroscopy with a single Alexa 647 molecule in the focal volume. Moreover, the metalens enables real-time monitoring of individual fluorescent nanoparticle transitions and identification of hydrodynamic diameters ranging from a few to hundreds of nanometers. This advancement in sensitivity extends the application of the metalens technology to ultracompact single-molecule sensors.

Suggested Citation

  • Aleksandr Barulin & Yeseul Kim & Dong Kyo Oh & Jaehyuck Jang & Hyemi Park & Junsuk Rho & Inki Kim, 2024. "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44407-4
    DOI: 10.1038/s41467-023-44407-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44407-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44407-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kateryna Trofymchuk & Viktorija Glembockyte & Lennart Grabenhorst & Florian Steiner & Carolin Vietz & Cindy Close & Martina Pfeiffer & Lars Richter & Max L. Schütte & Florian Selbach & Renukka Yaadav , 2021. "Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Tzu-Yung Huang & Richard R. Grote & Sander A. Mann & David A. Hopper & Annemarie L. Exarhos & Gerald G. Lopez & Amelia R. Klein & Erik C. Garnett & Lee C. Bassett, 2019. "A monolithic immersion metalens for imaging solid-state quantum emitters," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Aleksandr Barulin & Prithu Roy & Jean-Benoît Claude & Jérôme Wenger, 2022. "Ultraviolet optical horn antennas for label-free detection of single proteins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. F. Balli & M. Sultan & Sarah K. Lami & J. T. Hastings, 2020. "A hybrid achromatic metalens," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Amani A. Hariri & Sharon S. Newman & Steven Tan & Dan Mamerow & Alexandra M. Adams & Nicolò Maganzini & Brian L. Zhong & Michael Eisenstein & Alexander R. Dunn & H. Tom Soh, 2022. "Improved immunoassay sensitivity and specificity using single-molecule colocalization," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Danylo Komisar & Shailesh Kumar & Yinhui Kan & Chao Meng & Liudmila F. Kulikova & Valery A. Davydov & Viatcheslav N. Agafonov & Sergey I. Bozhevolnyi, 2023. "Multiple channelling single-photon emission with scattering holography designed metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Gyeongtae Kim & Yeseul Kim & Jooyeong Yun & Seong-Won Moon & Seokwoo Kim & Jaekyung Kim & Junkyeong Park & Trevon Badloe & Inki Kim & Junsuk Rho, 2022. "Metasurface-driven full-space structured light for three-dimensional imaging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiaoyan Zhou & Hongtao Wang & Shuxi Liu & Hao Wang & John You En Chan & Cheng-Feng Pan & Daomu Zhao & Joel K. W. Yang & Cheng-Wei Qiu, 2024. "Arbitrary engineering of spatial caustics with 3D-printed metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44407-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.