IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17646-y.html
   My bibliography  Save this article

A hybrid achromatic metalens

Author

Listed:
  • F. Balli

    (University of Kentucky)

  • M. Sultan

    (University of Kentucky)

  • Sarah K. Lami

    (University of Kentucky)

  • J. T. Hastings

    (University of Kentucky)

Abstract

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000–1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated in low-refractive index materials using multi-photon lithography for customization or using molding for mass production. HAMLs demonstrated diffraction limited performance for numerical apertures of 0.27, 0.11, and 0.06, with average focusing efficiencies greater than 60% and maximum efficiencies up to 80%. A more complex design, the air-spaced HAML, introduces a gap between elements to enable even larger diameters and numerical apertures.

Suggested Citation

  • F. Balli & M. Sultan & Sarah K. Lami & J. T. Hastings, 2020. "A hybrid achromatic metalens," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17646-y
    DOI: 10.1038/s41467-020-17646-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17646-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17646-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Aleksandr Barulin & Yeseul Kim & Dong Kyo Oh & Jaehyuck Jang & Hyemi Park & Junsuk Rho & Inki Kim, 2024. "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17646-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.