IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39070-8.html
   My bibliography  Save this article

Eye accommodation-inspired neuro-metasurface focusing

Author

Listed:
  • Huan Lu

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University
    Zhejiang University)

  • Jiwei Zhao

    (Nanjing University)

  • Bin Zheng

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University
    Zhejiang University)

  • Chao Qian

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University
    Zhejiang University)

  • Tong Cai

    (Zhejiang University
    Air force Engineering University)

  • Erping Li

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University
    Zhejiang University)

  • Hongsheng Chen

    (Zhejiang University
    The Electromagnetics Academy at Zhejiang University, Zhejiang University
    Jinhua Institute of Zhejiang University, Zhejiang University
    Zhejiang University)

Abstract

The human eye, which relies on a flexible and controllable lens to focus light onto the retina, has inspired many scientific researchers to understand better and imitate the biological vision system. However, real-time environmental adaptability presents an enormous challenge for artificial eye-like focusing systems. Inspired by the mechanism of eye accommodation, we propose a supervised-evolving learning algorithm and design a neuro-metasurface focusing system. Driven by on-site learning, the system exhibits a rapid response to ever-changing incident waves and surrounding environments without any human intervention. Adaptive focusing is achieved in several scenarios with multiple incident wave sources and scattering obstacles. Our work demonstrates the unprecedented potential for real-time, fast, and complex electromagnetic (EM) wave manipulation for various purposes, such as achromatic, beam shaping, 6 G communication, and intelligent imaging.

Suggested Citation

  • Huan Lu & Jiwei Zhao & Bin Zheng & Chao Qian & Tong Cai & Erping Li & Hongsheng Chen, 2023. "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39070-8
    DOI: 10.1038/s41467-023-39070-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39070-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39070-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Arbabi & Amir Arbabi & Seyedeh Mahsa Kamali & Yu Horie & MohammadSadegh Faraji-Dana & Andrei Faraon, 2018. "MEMS-tunable dielectric metasurface lens," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Shuming Wang & Pin Chieh Wu & Vin-Cent Su & Yi-Chieh Lai & Cheng Hung Chu & Jia-Wern Chen & Shen-Hung Lu & Ji Chen & Beibei Xu & Chieh-Hsiung Kuan & Tao Li & Shining Zhu & Din Ping Tsai, 2017. "Broadband achromatic optical metasurface devices," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Lianlin Li & Tie Jun Cui & Wei Ji & Shuo Liu & Jun Ding & Xiang Wan & Yun Bo Li & Menghua Jiang & Cheng-Wei Qiu & Shuang Zhang, 2017. "Electromagnetic reprogrammable coding-metasurface holograms," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    4. Wei Ting Chen & Alexander Y. Zhu & Jared Sisler & Zameer Bharwani & Federico Capasso, 2019. "A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Lianlin Li & Hengxin Ruan & Che Liu & Ying Li & Ya Shuang & Andrea Alù & Cheng-Wei Qiu & Tie Jun Cui, 2019. "Machine-learning reprogrammable metasurface imager," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianshuo Qiu & Qiang An & Jianqi Wang & Jiafu Wang & Cheng-Wei Qiu & Shiyong Li & Hao Lv & Ming Cai & Jianyi Wang & Lin Cong & Shaobo Qu, 2024. "Vision-driven metasurfaces for perception enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liheng Bian & Daoyu Li & Shuoguang Wang & Chunyang Teng & Jinxuan Wu & Huteng Liu & Hanwen Xu & Xuyang Chang & Guoqiang Zhao & Shiyong Li & Jun Zhang, 2024. "Towards large-scale single-shot millimeter-wave imaging for low-cost security inspection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yueqiang Hu & Yuting Jiang & Yi Zhang & Xing Yang & Xiangnian Ou & Ling Li & Xianghong Kong & Xingsi Liu & Cheng-Wei Qiu & Huigao Duan, 2023. "Asymptotic dispersion engineering for ultra-broadband meta-optics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Wenzhi Li & Qiyue Yu & Jing Hui Qiu & Jiaran Qi, 2024. "Intelligent wireless power transfer via a 2-bit compact reconfigurable transmissive-metasurface-based router," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xin Wang & Jia Qi Han & Guan Xuan Li & De Xiao Xia & Ming Yang Chang & Xiang Jin Ma & Hao Xue & Peng Xu & Rui Jie Li & Kun Yi Zhang & Hai Xia Liu & Long Li & Tie Jun Cui, 2023. "High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Weihan Li & Qian Ma & Che Liu & Yunfeng Zhang & Xianning Wu & Jiawei Wang & Shizhao Gao & Tianshuo Qiu & Tonghao Liu & Qiang Xiao & Jiaxuan Wei & Ting Ting Gu & Zhize Zhou & Fashuai Li & Qiang Cheng &, 2023. "Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Hongrui Zhang & Yanjin Chen & Zhuo Wang & Tie Jun Cui & Philipp Hougne & Lianlin Li, 2024. "Semantic regularization of electromagnetic inverse problems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Okan Atalar & Raphaël Laer & Amir H. Safavi-Naeini & Amin Arbabian, 2022. "Longitudinal piezoelectric resonant photoelastic modulator for efficient intensity modulation at megahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Corey A. Richards & Christian R. Ocier & Dajie Xie & Haibo Gao & Taylor Robertson & Lynford L. Goddard & Rasmus E. Christiansen & David G. Cahill & Paul V. Braun, 2023. "Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jitao Ji & Jian Li & Zhizhang Wang & Xueyun Li & Jiacheng Sun & Junyi Wang & Bin Fang & Chen Chen & Xin Ye & Shining Zhu & Tao Li, 2024. "On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2023. "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Jin Yao & Fangxing Lai & Yubin Fan & Yuhan Wang & Shih-Hsiu Huang & Borui Leng & Yao Liang & Rong Lin & Shufan Chen & Mu Ku Chen & Pin Chieh Wu & Shumin Xiao & Din Ping Tsai, 2024. "Nonlocal meta-lens with Huygens’ bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Jérôme Sol & David R. Smith & Philipp Hougne, 2022. "Meta-programmable analog differentiator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Leal Filho, Walter & Wall, Tony & Rui Mucova, Serafino Afonso & Nagy, Gustavo J. & Balogun, Abdul-Lateef & Luetz, Johannes M. & Ng, Artie W. & Kovaleva, Marina & Safiul Azam, Fardous Mohammad & Alves,, 2022. "Deploying artificial intelligence for climate change adaptation," Technological Forecasting and Social Change, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39070-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.