IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52850-0.html
   My bibliography  Save this article

Biorenewable and circular polyolefin thermoplastic elastomers

Author

Listed:
  • Ye Sha

    (Nanjing Forestry University)

  • Xiaofan Chen

    (Nanjing Forestry University)

  • Wei Sun

    (Nanjing Forestry University
    Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources)

  • Junfeng Zhou

    (Xiangtan University)

  • Yucheng He

    (Nanjing Forestry University)

  • Enhua Xu

    (Kobe University)

  • Zhenyang Luo

    (Nanjing Forestry University)

  • Yonghong Zhou

    (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources)

  • Puyou Jia

    (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources)

Abstract

Polymers capable of depolymerizing back to their own monomers offer a promising solution to address the challenges in polymer sustainability. Despite significant progress has been achieved in plastics circularity, chemical recycling of thermoplastic elastomers is relatively less concerned, largely because of their intrinsic complex multicomponents. This work creates a homopolymer-based platform towards chemically recyclable but tough thermoplastic elastomers. It is enabled by a semicrystalline polymer with high molecular weight but low crystallinity, which is prepared through ring-opening metathesis polymerization of a fully biobased cyclic olefin. By shifting the ring−chain equilibrium, quantitative conversions were achieved for both forward polymerization and reverse depolymerization. This simple circular, high-performance thermoplastic elastomer platform based on biomass highlights the importance of monomer design in addressing three challenges in sustainable polymers: the feedstock renewability, depolymerization selectivity, and performance trade-offs.

Suggested Citation

  • Ye Sha & Xiaofan Chen & Wei Sun & Junfeng Zhou & Yucheng He & Enhua Xu & Zhenyang Luo & Yonghong Zhou & Puyou Jia, 2024. "Biorenewable and circular polyolefin thermoplastic elastomers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52850-0
    DOI: 10.1038/s41467-024-52850-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52850-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52850-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peyton Shieh & Wenxu Zhang & Keith E. L. Husted & Samantha L. Kristufek & Boya Xiong & David J. Lundberg & Jet Lem & David Veysset & Yuchen Sun & Keith A. Nelson & Desiree L. Plata & Jeremiah A. Johns, 2020. "Publisher Correction: Cleavable comonomers enable degradable, recyclable thermoset plastics," Nature, Nature, vol. 585(7823), pages 4-4, September.
    2. Jin-Zhuo Zhao & Tian-Jun Yue & Bai-Hao Ren & Xiao-Bing Lu & Wei-Min Ren, 2024. "Closed-loop recycling of sulfur-rich polymers with tunable properties spanning thermoplastics, elastomers, and vitrimers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Peyton Shieh & Wenxu Zhang & Keith E. L. Husted & Samantha L. Kristufek & Boya Xiong & David J. Lundberg & Jet Lem & David Veysset & Yuchen Sun & Keith A. Nelson & Desiree L. Plata & Jeremiah A. Johns, 2020. "Cleavable comonomers enable degradable, recyclable thermoset plastics," Nature, Nature, vol. 583(7817), pages 542-547, July.
    4. Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Jeremy Demarteau & Benjamin Cousineau & Zilong Wang & Baishakhi Bose & Seokjung Cheong & Guangxu Lan & Nawa R. Baral & Simon J. Teat & Corinne D. Scown & Jay D. Keasling & Brett A. Helms, 2023. "Biorenewable and circular polydiketoenamine plastics," Nature Sustainability, Nature, vol. 6(11), pages 1426-1435, November.
    6. Coralie Jehanno & Jill W. Alty & Martijn Roosen & Steven Meester & Andrew P. Dove & Eugene Y.-X. Chen & Frank A. Leibfarth & Haritz Sardon, 2022. "Critical advances and future opportunities in upcycling commodity polymers," Nature, Nature, vol. 603(7903), pages 803-814, March.
    7. Manuel Häußler & Marcel Eck & Dario Rothauer & Stefan Mecking, 2021. "Closed-loop recycling of polyethylene-like materials," Nature, Nature, vol. 590(7846), pages 423-427, February.
    8. Shengbo Zhang & Qikun Hu & Yu-Xiao Zhang & Haoyue Guo & Yanfen Wu & Mingze Sun & Xingsong Zhu & Jiangang Zhang & Shuyan Gong & Ping Liu & Zhiqiang Niu, 2023. "Depolymerization of polyesters by a binuclear catalyst for plastic recycling," Nature Sustainability, Nature, vol. 6(8), pages 965-973, August.
    9. Yi-Min Tu & Fu-Long Gong & Yan-Chen Wu & Zhongzheng Cai & Jian-Bo Zhu, 2023. "Insights into substitution strategy towards thermodynamic and property regulation of chemically recyclable polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Sheng Wang & Nannan Wang & Dan Kai & Bofan Li & Jing Wu & Jayven Chee Chuan YEO & Xiwei Xu & Jin Zhu & Xian Jun Loh & Nikos Hadjichristidis & Zibiao Li, 2023. "In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Alexander D. Snyder & Zachary J. Phillips & Jack S. Turicek & Charles E. Diesendruck & Kalyana B. Nakshatrala & Jason F. Patrick, 2022. "Prolonged in situ self-healing in structural composites via thermo-reversible entanglement," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xing-Wang Han & Xun Zhang & Youyun Zhou & Aizezi Maimaitiming & Xiu-Li Sun & Yanshan Gao & Peizhi Li & Boyu Zhu & Eugene Y.-X. Chen & Xiaokang Kuang & Yong Tang, 2024. "Circular olefin copolymers made de novo from ethylene and α-olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Wei Zeng & Yanfei Zhao & Fengtao Zhang & Rongxiang Li & Minhao Tang & Xiaoqian Chang & Ying Wang & Fengtian Wu & Buxing Han & Zhimin Liu, 2024. "A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Bo Qin & Siyuan Liu & Zehuan Huang & Lingda Zeng & Jiang-Fei Xu & Xi Zhang, 2022. "Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Junheng Zhang & Can Jiang & Guoyan Deng & Mi Luo & Bangjiao Ye & Hongjun Zhang & Menghe Miao & Tingcheng Li & Daohong Zhang, 2024. "Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Kai Ma & Hai-Yan An & Jiyun Nam & Liam T. Reilly & Yi-Lin Zhang & Eugene Y.-X. Chen & Tie-Qi Xu, 2024. "Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zhen Yu & Yang Li & Yaoxin Zhang & Ping Xu & Chade Lv & Wulong Li & Bushra Maryam & Xianhua Liu & Swee Ching Tan, 2024. "Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    11. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Katelyn M. Derr & Rhett C. Smith, 2024. "Thiocracking of Multi-Materials: High-Strength Composites from Post-Consumer Food Packaging Jars," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    16. Xun Zhang & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2023. "A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Haijun Feng & Ning Zheng & Wenjun Peng & Chujun Ni & Huijie Song & Qian Zhao & Tao Xie, 2022. "Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Yan Guo & Bowen Zhu & Chuyang Y. Tang & Qixin Zhou & Yongfa Zhu, 2024. "Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Jomin Thomas & Renuka Subhash Patil & Mahesh Patil & Jacob John, 2023. "Addressing the Sustainability Conundrums and Challenges within the Polymer Value Chain," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    20. Xiaozhuang Zhou & Yijun Zheng & Haohui Zhang & Li Yang & Yubo Cui & Baiju P. Krishnan & Shihua Dong & Michael Aizenberg & Xinhong Xiong & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2023. "Reversibly growing crosslinked polymers with programmable sizes and properties," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52850-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.