IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34840-2.html
   My bibliography  Save this article

Overcoming the low reactivity of biobased, secondary diols in polyester synthesis

Author

Listed:
  • Daniel H. Weinland

    (University of Amsterdam)

  • Kevin van der Maas

    (University of Amsterdam)

  • Yue Wang

    (University of Amsterdam)

  • Bruno Bottega Pergher

    (University of Amsterdam)

  • Robert-Jan van Putten

    (University of Amsterdam
    Avantium Chemicals BV, Zekeringstraat 29)

  • Bing Wang

    (Avantium Chemicals BV, Zekeringstraat 29)

  • Gert-Jan M. Gruter

    (University of Amsterdam
    Avantium Chemicals BV, Zekeringstraat 29)

Abstract

Shifting away from fossil- to biobased feedstocks is an important step towards a more sustainable materials sector. Isosorbide is a rigid, glucose-derived secondary diol, which has been shown to impart favourable material properties, but its low reactivity has hampered its use in polyester synthesis. Here we report a simple, yet innovative, synthesis strategy to overcome the inherently low reactivity of secondary diols in polyester synthesis. It enables the synthesis of fully biobased polyesters from secondary diols, such as poly(isosorbide succinate), with very high molecular weights (Mn up to 42.8 kg/mol). The addition of an aryl alcohol to diol and diacid monomers was found to lead to the in-situ formation of reactive aryl esters during esterification, which facilitated chain growth during polycondensation to obtain high molecular weight polyesters. This synthesis method is broadly applicable for aliphatic polyesters based on isosorbide and isomannide and could be an important step towards the more general commercial adaption of fully biobased, rigid polyesters.

Suggested Citation

  • Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34840-2
    DOI: 10.1038/s41467-022-34840-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34840-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34840-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunqing Zhu & Charles Romain & Charlotte K. Williams, 2016. "Sustainable polymers from renewable resources," Nature, Nature, vol. 540(7633), pages 354-362, December.
    2. Manuel Häußler & Marcel Eck & Dario Rothauer & Stefan Mecking, 2021. "Closed-loop recycling of polyethylene-like materials," Nature, Nature, vol. 590(7846), pages 423-427, February.
    3. Seul-A Park & Hyeonyeol Jeon & Hyungjun Kim & Sung-Ho Shin & Seunghwan Choy & Dong Soo Hwang & Jun Mo Koo & Jonggeon Jegal & Sung Yeon Hwang & Jeyoung Park & Dongyeop X. Oh, 2019. "Sustainable and recyclable super engineering thermoplastic from biorenewable monomer," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Sha & Xiaofan Chen & Wei Sun & Junfeng Zhou & Yucheng He & Enhua Xu & Zhenyang Luo & Yonghong Zhou & Puyou Jia, 2024. "Biorenewable and circular polyolefin thermoplastic elastomers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Tana Tana & Pengfei Han & Aidan J. Brock & Xin Mao & Sarina Sarina & Eric R. Waclawik & Aijun Du & Steven E. Bottle & Huai-Yong Zhu, 2023. "Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    4. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    5. Puck Bos & Linda Ritzen & Sonja van Dam & Ruud Balkenende & Conny Bakker, 2024. "Bio-Based Plastics in Product Design: The State of the Art and Challenges to Overcome," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    6. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Xing-Wang Han & Xun Zhang & Youyun Zhou & Aizezi Maimaitiming & Xiu-Li Sun & Yanshan Gao & Peizhi Li & Boyu Zhu & Eugene Y.-X. Chen & Xiaokang Kuang & Yong Tang, 2024. "Circular olefin copolymers made de novo from ethylene and α-olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. Deshraj Deepak Kapoor & Shilpi Yadav & Ravi Kr. Gupta, 2024. "Comprehensive study of microbial bioplastic: present status and future perspectives for sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 21985-22011, September.
    11. Rizki Rinanda & Yunan Sun & Keke Chang & Rini Sulastri & Xiaoqiang Cui & Zhanjun Cheng & Beibei Yan & Guanyi Chen, 2023. "Plastic Waste Management: A Bibliometric Analysis (1992–2022)," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    12. Dawei Wang & Chuanming Du & Dongdong Feng & Yuting Li & Yu Zhang & Yijun Zhao & Guangbo Zhao, 2019. "The Thermal Swelling Properties of Plant Chemical Alcohol Waste Liquid," Energies, MDPI, vol. 12(21), pages 1-11, November.
    13. Xin Zhang & Yaohui Cheng & Jingxuan You & Jinming Zhang & Chunchun Yin & Jun Zhang, 2022. "Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.
    15. Baolong Qiu & Mengjie Liu & Xin Qu & Fengying Zhou & Hongwei Xie & Dihua Wang & Lawrence Yoon Suk Lee & Huayi Yin, 2024. "Waste plastics upcycled for high-efficiency H2O2 production and lithium recovery via Ni-Co/carbon nanotubes composites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Andreas Schneider & Thomas B. Lystbæk & Daniel Markthaler & Niels Hansen & Bernhard Hauer, 2024. "Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Nicholas M. Holden & Andrew M. Neill & Jane C. Stout & Derek O’Brien & Michael A. Morris, 2023. "Biocircularity: a Framework to Define Sustainable, Circular Bioeconomy," Circular Economy and Sustainability, Springer, vol. 3(1), pages 77-91, March.
    18. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    20. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34840-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.