IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50421-x.html
   My bibliography  Save this article

Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production

Author

Listed:
  • Zhen Yu

    (National University of Singapore
    Tianjin University)

  • Yang Li

    (Tianjin University)

  • Yaoxin Zhang

    (Shanghai Jiao Tong University)

  • Ping Xu

    (Harbin Institute of Technology)

  • Chade Lv

    (Harbin Institute of Technology)

  • Wulong Li

    (Nanyang Technological University)

  • Bushra Maryam

    (Tianjin University)

  • Xianhua Liu

    (Tianjin University)

  • Swee Ching Tan

    (National University of Singapore)

Abstract

Freshwater scarcity and microplastics (MPs) pollution are two concerning and intertwined global challenges. In this work, we propose a “one stone kills two birds” strategy by employing an interfacial solar evaporation platform (ISEP) combined with a MPs adsorbent. This strategy aims to produce clean water and simultaneously enhance MPs removal. Unlike traditional predecessors, our ISEP generates condensed water free from MPs contamination. Additionally, the photothermally driven interfacial separation process significantly improves the MPs removal performance. We observed a removal ratio increase of up to 5.5 times compared to previously reported MPs adsorbents. Thus, our rationally-designed ISEP holds promising potential to not only mitigate the existing water scarcity issue but also remediate MPs pollution in natural water environments.

Suggested Citation

  • Zhen Yu & Yang Li & Yaoxin Zhang & Ping Xu & Chade Lv & Wulong Li & Bushra Maryam & Xianhua Liu & Swee Ching Tan, 2024. "Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50421-x
    DOI: 10.1038/s41467-024-50421-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50421-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50421-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Veronica Nava & Sudeep Chandra & Julian Aherne & María B. Alfonso & Ana M. Antão-Geraldes & Katrin Attermeyer & Roberto Bao & Mireia Bartrons & Stella A. Berger & Marcin Biernaczyk & Raphael Bissen & , 2023. "Plastic debris in lakes and reservoirs," Nature, Nature, vol. 619(7969), pages 317-322, July.
    2. Akanksha K. Menon & Iwan Haechler & Sumanjeet Kaur & Sean Lubner & Ravi S. Prasher, 2020. "Enhanced solar evaporation using a photo-thermal umbrella for wastewater management," Nature Sustainability, Nature, vol. 3(2), pages 144-151, February.
    3. Yaoxin Zhang & Swee Ching Tan, 2022. "Best practices for solar water production technologies," Nature Sustainability, Nature, vol. 5(7), pages 554-556, July.
    4. Shengbo Zhang & Qikun Hu & Yu-Xiao Zhang & Haoyue Guo & Yanfen Wu & Mingze Sun & Xingsong Zhu & Jiangang Zhang & Shuyan Gong & Ping Liu & Zhiqiang Niu, 2023. "Depolymerization of polyesters by a binuclear catalyst for plastic recycling," Nature Sustainability, Nature, vol. 6(8), pages 965-973, August.
    5. Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijie Yang & Tingting Pan & Saichao Dang & Qiaoqiang Gan & Yu Han, 2022. "Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Jonghyeok Shin & Siqi Liao & Nurzhan Kuanyshev & Yongping Xin & Chanwoo Kim & Ting Lu & Yong-Su Jin, 2024. "Compositional and temporal division of labor modulates mixed sugar fermentation by an engineered yeast consortium," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Qi Dang & Wei Zhang & Jiqing Liu & Liting Wang & Deli Wu & Dejin Wang & Zhendong Lei & Liang Tang, 2023. "Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Wei Zhang & Yongzhe Chen & Qinghua Ji & Yuying Fan & Gong Zhang & Xi Lu & Chengzhi Hu & Huijuan Liu & Jiuhui Qu, 2024. "Assessing global drinking water potential from electricity-free solar water evaporation device," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Gnanasekaran, Arulmurugan & Rajaram, Kamatchi, 2024. "Rational design of different interfacial evaporators for solar steam generation: Recent development, fabrication, challenges and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Eliodoro Chiavazzo, 2022. "Critical aspects to enable viable solar-driven evaporative technologies for water treatment," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    9. Luísa Madalena Amorim & José Lino Costa & Ana Cristina Costa & Andrea Zita Botelho & Paulo Torres, 2024. "Unveiling Microplastic Abundance and Distribution in an Oceanic Island: Offshore Depository or Local Pollution Indicator," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
    10. Lenan Zhang & Xiangyu Li & Yang Zhong & Arny Leroy & Zhenyuan Xu & Lin Zhao & Evelyn N. Wang, 2022. "Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Yu, Zhen & Cheng, Shaoan & Gu, Ruonan & Li, Yihang & Dai, Shaoling & Mao, Zhengzhong, 2021. "Interfacial solar evaporator for clean water production and beyond: From design to application," Applied Energy, Elsevier, vol. 299(C).
    12. Kai Li & Hauke Ward & Hai Xiang Lin & Arnold Tukker, 2024. "Economic viability requires higher recycling rates for imported plastic waste than expected," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Wei Zeng & Yanfei Zhao & Fengtao Zhang & Rongxiang Li & Minhao Tang & Xiaoqian Chang & Ying Wang & Fengtian Wu & Buxing Han & Zhimin Liu, 2024. "A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Yan Guo & Bowen Zhu & Chuyang Y. Tang & Qixin Zhou & Yongfa Zhu, 2024. "Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50421-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.