IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45219-w.html
   My bibliography  Save this article

Circular olefin copolymers made de novo from ethylene and α-olefins

Author

Listed:
  • Xing-Wang Han

    (Southern University of Science and Technology)

  • Xun Zhang

    (Chinese Academy of Sciences)

  • Youyun Zhou

    (Southern University of Science and Technology)

  • Aizezi Maimaitiming

    (Chinese Academy of Sciences)

  • Xiu-Li Sun

    (Chinese Academy of Sciences)

  • Yanshan Gao

    (Chinese Academy of Sciences)

  • Peizhi Li

    (Southern University of Science and Technology)

  • Boyu Zhu

    (Southern University of Science and Technology)

  • Eugene Y.-X. Chen

    (Colorado State University)

  • Xiaokang Kuang

    (Southern University of Science and Technology)

  • Yong Tang

    (Southern University of Science and Technology
    Chinese Academy of Sciences)

Abstract

Ethylene/α-olefin copolymers are produced in huge scale and widely used, but their after-use disposal has caused plastic pollution problems. Their chemical inertness made chemical re/upcycling difficult. Ideally, PE materials should be made de novo to have a circular closed-loop lifecycle. However, synthesis of circular ethylene/α-olefin copolymers, including high-volume, linear low-density PE as well as high-value olefin elastomers and block copolymers, presents a particular challenge due to difficulties in introducing branches while simultaneously installing chemical recyclability and directly using industrial ethylene and α-olefin feedstocks. Here we show that coupling of industrial coordination copolymerization of ethylene and α-olefins with a designed functionalized chain-transfer agent, followed by modular assembly of the resulting AB telechelic polyolefin building blocks by polycondensation, affords a series of ester-linked PE-based copolymers. These new materials not only retain thermomechanical properties of PE-based materials but also exhibit full chemical circularity via simple transesterification and markedly enhanced adhesion to polar surfaces.

Suggested Citation

  • Xing-Wang Han & Xun Zhang & Youyun Zhou & Aizezi Maimaitiming & Xiu-Li Sun & Yanshan Gao & Peizhi Li & Boyu Zhu & Eugene Y.-X. Chen & Xiaokang Kuang & Yong Tang, 2024. "Circular olefin copolymers made de novo from ethylene and α-olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45219-w
    DOI: 10.1038/s41467-024-45219-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45219-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45219-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacob T. Edwards & Rohan R. Merchant & Kyle S. McClymont & Kyle W. Knouse & Tian Qin & Lara R. Malins & Benjamin Vokits & Scott A. Shaw & Deng-Hui Bao & Fu-Liang Wei & Ting Zhou & Martin D. Eastgate &, 2017. "Decarboxylative alkenylation," Nature, Nature, vol. 545(7653), pages 213-218, May.
    2. Coralie Jehanno & Jill W. Alty & Martijn Roosen & Steven Meester & Andrew P. Dove & Eugene Y.-X. Chen & Frank A. Leibfarth & Haritz Sardon, 2022. "Critical advances and future opportunities in upcycling commodity polymers," Nature, Nature, vol. 603(7903), pages 803-814, March.
    3. Manuel Häußler & Marcel Eck & Dario Rothauer & Stefan Mecking, 2021. "Closed-loop recycling of polyethylene-like materials," Nature, Nature, vol. 590(7846), pages 423-427, February.
    4. Alexander H. Mason & Alessandro Motta & Anusheela Das & Qing Ma & Michael J. Bedzyk & Yosi Kratish & Tobin J. Marks, 2022. "Rapid atom-efficient polyolefin plastics hydrogenolysis mediated by a well-defined single-site electrophilic/cationic organo-zirconium catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ye Sha & Xiaofan Chen & Wei Sun & Junfeng Zhou & Yucheng He & Enhua Xu & Zhenyang Luo & Yonghong Zhou & Puyou Jia, 2024. "Biorenewable and circular polyolefin thermoplastic elastomers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jomin Thomas & Renuka Subhash Patil & Mahesh Patil & Jacob John, 2023. "Addressing the Sustainability Conundrums and Challenges within the Polymer Value Chain," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    6. Yunpeng Yin & Jinxin Wang & Jian Li, 2024. "A concise and scalable chemoenzymatic synthesis of prostaglandins," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Katarzyna Świderek & Susana Velasco-Lozano & Miquel À. Galmés & Ion Olazabal & Haritz Sardon & Fernando López-Gallego & Vicent Moliner, 2023. "Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Baolong Qiu & Mengjie Liu & Xin Qu & Fengying Zhou & Hongwei Xie & Dihua Wang & Lawrence Yoon Suk Lee & Huayi Yin, 2024. "Waste plastics upcycled for high-efficiency H2O2 production and lithium recovery via Ni-Co/carbon nanotubes composites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Kai Ma & Hai-Yan An & Jiyun Nam & Liam T. Reilly & Yi-Lin Zhang & Eugene Y.-X. Chen & Tie-Qi Xu, 2024. "Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Laura Wimberger & Gervase Ng & Cyrille Boyer, 2024. "Light-driven polymer recycling to monomers and small molecules," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    12. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Katelyn M. Derr & Rhett C. Smith, 2024. "Thiocracking of Multi-Materials: High-Strength Composites from Post-Consumer Food Packaging Jars," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    14. Xun Zhang & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2023. "A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Wei Zeng & Yanfei Zhao & Fengtao Zhang & Rongxiang Li & Minhao Tang & Xiaoqian Chang & Ying Wang & Fengtian Wu & Buxing Han & Zhimin Liu, 2024. "A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Sheng Wang & Nannan Wang & Dan Kai & Bofan Li & Jing Wu & Jayven Chee Chuan YEO & Xiwei Xu & Jin Zhu & Xian Jun Loh & Nikos Hadjichristidis & Zibiao Li, 2023. "In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Xiaozhuang Zhou & Yijun Zheng & Haohui Zhang & Li Yang & Yubo Cui & Baiju P. Krishnan & Shihua Dong & Michael Aizenberg & Xinhong Xiong & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2023. "Reversibly growing crosslinked polymers with programmable sizes and properties," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Robin Lemmens & Jannick Vercammen & Lander Belleghem & Dirk Vos, 2024. "Upcycling polyethylene into closed-loop recyclable polymers through titanosilicate catalyzed C-H oxidation and in-chain heteroatom insertion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Theerayut Phengsaart & Pongsiri Julapong & Chaiwat Manositchaikul & Palot Srichonphaisarn & Monthicha Rawangphai & Onchanok Juntarasakul & Kosei Aikawa & Sanghee Jeon & Ilhwan Park & Carlito Baltazar , 2023. "Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    20. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45219-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.