IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50679-1.html
   My bibliography  Save this article

Waste plastics upcycled for high-efficiency H2O2 production and lithium recovery via Ni-Co/carbon nanotubes composites

Author

Listed:
  • Baolong Qiu

    (Northeastern University)

  • Mengjie Liu

    (Hung Hom)

  • Xin Qu

    (Wuhan University)

  • Fengying Zhou

    (Wuhan University)

  • Hongwei Xie

    (Northeastern University)

  • Dihua Wang

    (Wuhan University)

  • Lawrence Yoon Suk Lee

    (Hung Hom)

  • Huayi Yin

    (Northeastern University
    Wuhan University
    Northeastern University)

Abstract

The disposal and management of waste lithium-ion batteries (LIBs) and low-density polyethylene (LDPE) plastics pose significant environmental challenges. Here we show a synergistic pyrolysis approach that employs spent lithium transition metal oxides and waste LDPE plastics in one sealed reactor to achieve the separation of Li and transition metal. Additionally, we demonstrate the preparation of nanoscale NiCo alloy@carbon nanotubes (CNTs) through co-pyrolysis of LiNi0.6Co0.2Mn0.2O2 and LDPE. The NiCo alloy@CNTs exhibits excellent catalytic activity (Eonset = ~0.85 V) and the selectivity (~90%) for H2O2 production through the electrochemical reduction of oxygen. This can be attributed to the NiCo nanoalloy core and the presence of CNTs with abundant oxygen-containing functional groups (e.g., –COOH and C–O–C), as confirmed by density function theory calculations. Overall, this work presents a straightforward and green approach for valorizing and upcycling various waste LIBs and LDPE plastics.

Suggested Citation

  • Baolong Qiu & Mengjie Liu & Xin Qu & Fengying Zhou & Hongwei Xie & Dihua Wang & Lawrence Yoon Suk Lee & Huayi Yin, 2024. "Waste plastics upcycled for high-efficiency H2O2 production and lithium recovery via Ni-Co/carbon nanotubes composites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50679-1
    DOI: 10.1038/s41467-024-50679-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50679-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50679-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunqing Zhu & Charles Romain & Charlotte K. Williams, 2016. "Sustainable polymers from renewable resources," Nature, Nature, vol. 540(7633), pages 354-362, December.
    2. Coralie Jehanno & Jill W. Alty & Martijn Roosen & Steven Meester & Andrew P. Dove & Eugene Y.-X. Chen & Frank A. Leibfarth & Haritz Sardon, 2022. "Critical advances and future opportunities in upcycling commodity polymers," Nature, Nature, vol. 603(7903), pages 803-814, March.
    3. Junxiong Wang & Kai Jia & Jun Ma & Zheng Liang & Zhaofeng Zhuang & Yun Zhao & Baohua Li & Guangmin Zhou & Hui-Ming Cheng, 2023. "Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage," Nature Sustainability, Nature, vol. 6(7), pages 797-805, July.
    4. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    5. Christian Bauer & Simon Burkhardt & Neil P. Dasgupta & Linda Ager-Wick Ellingsen & Linda L. Gaines & Han Hao & Roland Hischier & Liangbing Hu & Yunhui Huang & Jürgen Janek & Chengdu Liang & Hong Li & , 2022. "Charging sustainable batteries," Nature Sustainability, Nature, vol. 5(3), pages 176-178, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangxi Lou & Penglei Yan & Binglei Jiao & Qingye Li & Panpan Xu & Lei Wang & Liang Zhang & Muhan Cao & Guiling Wang & Zheng Chen & Qiao Zhang & Jinxing Chen, 2024. "Grave-to-cradle photothermal upcycling of waste polyesters over spent LiCoO2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    3. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xun Zhang & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2023. "A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Tana Tana & Pengfei Han & Aidan J. Brock & Xin Mao & Sarina Sarina & Eric R. Waclawik & Aijun Du & Steven E. Bottle & Huai-Yong Zhu, 2023. "Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    9. Andreas Schneider & Thomas B. Lystbæk & Daniel Markthaler & Niels Hansen & Bernhard Hauer, 2024. "Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    12. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    13. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    14. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    15. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    17. Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    18. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    19. Hongxia Chen & Jeongsoo Yu & Xiaoyue Liu, 2022. "Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    20. Costa, C.M. & Barbosa, J.C. & Castro, H. & Gonçalves, R. & Lanceros-Méndez, S., 2021. "Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50679-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.