IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49272-3.html
   My bibliography  Save this article

Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure

Author

Listed:
  • Junheng Zhang

    (South-Central Minzu University
    Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center)

  • Can Jiang

    (South-Central Minzu University)

  • Guoyan Deng

    (South-Central Minzu University)

  • Mi Luo

    (University of Science and Technology of China)

  • Bangjiao Ye

    (University of Science and Technology of China)

  • Hongjun Zhang

    (University of Science and Technology of China)

  • Menghe Miao

    (The University of Melbourne)

  • Tingcheng Li

    (South-Central Minzu University)

  • Daohong Zhang

    (South-Central Minzu University)

Abstract

The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.

Suggested Citation

  • Junheng Zhang & Can Jiang & Guoyan Deng & Mi Luo & Bangjiao Ye & Hongjun Zhang & Menghe Miao & Tingcheng Li & Daohong Zhang, 2024. "Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49272-3
    DOI: 10.1038/s41467-024-49272-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49272-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49272-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peyton Shieh & Wenxu Zhang & Keith E. L. Husted & Samantha L. Kristufek & Boya Xiong & David J. Lundberg & Jet Lem & David Veysset & Yuchen Sun & Keith A. Nelson & Desiree L. Plata & Jeremiah A. Johns, 2020. "Publisher Correction: Cleavable comonomers enable degradable, recyclable thermoset plastics," Nature, Nature, vol. 585(7823), pages 4-4, September.
    2. Bo Qin & Siyuan Liu & Zehuan Huang & Lingda Zeng & Jiang-Fei Xu & Xi Zhang, 2022. "Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Peyton Shieh & Wenxu Zhang & Keith E. L. Husted & Samantha L. Kristufek & Boya Xiong & David J. Lundberg & Jet Lem & David Veysset & Yuchen Sun & Keith A. Nelson & Desiree L. Plata & Jeremiah A. Johns, 2020. "Cleavable comonomers enable degradable, recyclable thermoset plastics," Nature, Nature, vol. 583(7817), pages 542-547, July.
    4. Alexander Ahrens & Andreas Bonde & Hongwei Sun & Nina Kølln Wittig & Hans Christian D. Hammershøj & Gabriel Martins Ferreira Batista & Andreas Sommerfeldt & Simon Frølich & Henrik Birkedal & Troels Sk, 2023. "Catalytic disconnection of C–O bonds in epoxy resins and composites," Nature, Nature, vol. 617(7962), pages 730-737, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander D. Snyder & Zachary J. Phillips & Jack S. Turicek & Charles E. Diesendruck & Kalyana B. Nakshatrala & Jason F. Patrick, 2022. "Prolonged in situ self-healing in structural composites via thermo-reversible entanglement," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Sheng Wang & Nannan Wang & Dan Kai & Bofan Li & Jing Wu & Jayven Chee Chuan YEO & Xiwei Xu & Jin Zhu & Xian Jun Loh & Nikos Hadjichristidis & Zibiao Li, 2023. "In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Bo Qin & Siyuan Liu & Zehuan Huang & Lingda Zeng & Jiang-Fei Xu & Xi Zhang, 2022. "Closed-loop chemical recycling of cross-linked polymeric materials based on reversible amidation chemistry," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Haijun Feng & Ning Zheng & Wenjun Peng & Chujun Ni & Huijie Song & Qian Zhao & Tao Xie, 2022. "Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49272-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.