IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52660-4.html
   My bibliography  Save this article

Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster

Author

Listed:
  • Xinkai Wu

    (Peking University)

  • Mengze Xu

    (Peking University)

  • Jian-Rong Yang

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

  • Jian Lu

    (Peking University)

Abstract

Accuracy and efficiency are fundamental to mRNA translation. Codon usage bias is widespread across species. Despite the long-standing association between optimized codon usage and improved translation, our understanding of its evolutionary basis and functional effects remains limited. Drosophila is widely used to study codon usage bias, but genome-scale experimental data are scarce. Using high-resolution mass spectrometry data from Drosophila melanogaster, we show that optimal codons have lower translation errors than nonoptimal codons after accounting for these biases. Genomic-scale analysis of ribosome profiling data shows that optimal codons are translated more rapidly than nonoptimal codons. Although we find no long-term selection favoring synonymous mutations in D. melanogaster after diverging from D. simulans, we identify signatures of positive selection driving codon optimization in the D. melanogaster population. These findings expand our understanding of the functional consequences of codon optimization and serve as a foundation for future investigations.

Suggested Citation

  • Xinkai Wu & Mengze Xu & Jian-Rong Yang & Jian Lu, 2024. "Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52660-4
    DOI: 10.1038/s41467-024-52660-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52660-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52660-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xukang Shen & Siliang Song & Chuan Li & Jianzhi Zhang, 2022. "Synonymous mutations in representative yeast genes are mostly strongly non-neutral," Nature, Nature, vol. 606(7915), pages 725-731, June.
    2. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    3. Nick G. C. Smith & Adam Eyre-Walker, 2002. "Adaptive protein evolution in Drosophila," Nature, Nature, vol. 415(6875), pages 1022-1024, February.
    4. Puneet Sharma & Jie Wu & Benedikt S. Nilges & Sebastian A. Leidel, 2021. "Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Sina Ghaemmaghami & Won-Ki Huh & Kiowa Bower & Russell W. Howson & Archana Belle & Noah Dephoure & Erin K. O'Shea & Jonathan S. Weissman, 2003. "Global analysis of protein expression in yeast," Nature, Nature, vol. 425(6959), pages 737-741, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    2. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    3. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    4. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    5. Anneke Brümmer & Carlos Salazar & Vittoria Zinzalla & Lilia Alberghina & Thomas Höfer, 2010. "Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-13, May.
    6. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    7. Piaopiao Chen & Jianzhi Zhang, 2024. "The loci of environmental adaptation in a model eukaryote," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    9. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.
    10. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    11. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    12. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Brian J. Caldwell & Andrew S. Norris & Caroline F. Karbowski & Alyssa M. Wiegand & Vicki H. Wysocki & Charles E. Bell, 2022. "Structure of a RecT/Redβ family recombinase in complex with a duplex intermediate of DNA annealing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Nebojsa Jukic & Alma P. Perrino & Frédéric Humbert & Aurélien Roux & Simon Scheuring, 2022. "Snf7 spirals sense and alter membrane curvature," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Toni I Gossmann & David Waxman & Adam Eyre-Walker, 2014. "Fluctuating Selection Models and Mcdonald-Kreitman Type Analyses," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-5, January.
    16. Keisuke Obara & Taku Yoshikawa & Ryu Yamaguchi & Keiko Kuwata & Kunio Nakatsukasa & Kohei Nishimura & Takumi Kamura, 2022. "Proteolysis of adaptor protein Mmr1 during budding is necessary for mitochondrial homeostasis in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Juan M Calvo-Martín & Montserrat Papaceit & Carmen Segarra, 2017. "Molecular population genetics of the Polycomb genes in Drosophila subobscura," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    18. Yang-Nim Park & David Morales & Emily H Rubinson & Daniel Masison & Evan Eisenberg & Lois E Greene, 2012. "Differences in the Curing of [PSI+] Prion by Various Methods of Hsp104 Inactivation," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-15, June.
    19. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    20. Alexey A Gritsenko & Marc Hulsman & Marcel J T Reinders & Dick de Ridder, 2015. "Unbiased Quantitative Models of Protein Translation Derived from Ribosome Profiling Data," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52660-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.