IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004220.html
   My bibliography  Save this article

Sharing and Specificity of Co-expression Networks across 35 Human Tissues

Author

Listed:
  • Emma Pierson
  • the GTEx Consortium
  • Daphne Koller
  • Alexis Battle
  • Sara Mostafavi

Abstract

To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.Author Summary: Cells in different tissues perform very different functions with the same DNA. This requires tissue-specific gene expression and regulation; understanding this tissue-specificity is often instrumental to understanding complex diseases. Here, we use tissue-specific gene expression data to learn tissue-specific gene regulatory networks for 35 human tissues, where two genes are linked if their expression levels are correlated. Learning such networks accurately is difficult because of the large number of possible links between genes and small number of samples. We propose a novel algorithm that combats this problem by sharing data between similar tissues and show that this increases the accuracy with which networks are learned. We provide a web tool for exploring these networks, enabling users to pose diverse queries in a gene- or tissue-centric manner, and facilitating explorations into gene function and regulation.

Suggested Citation

  • Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
  • Handle: RePEc:plo:pcbi00:1004220
    DOI: 10.1371/journal.pcbi.1004220
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004220
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004220&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    3. Sina Ghaemmaghami & Won-Ki Huh & Kiowa Bower & Russell W. Howson & Archana Belle & Noah Dephoure & Erin K. O'Shea & Jonathan S. Weissman, 2003. "Global analysis of protein expression in yeast," Nature, Nature, vol. 425(6959), pages 737-741, October.
    4. Yanqing Chen & Jun Zhu & Pek Yee Lum & Xia Yang & Shirly Pinto & Douglas J. MacNeil & Chunsheng Zhang & John Lamb & Stephen Edwards & Solveig K. Sieberts & Amy Leonardson & Lawrence W. Castellini & Su, 2008. "Variations in DNA elucidate molecular networks that cause disease," Nature, Nature, vol. 452(7186), pages 429-435, March.
    5. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Gao & Ian C McDowell & Shiwen Zhao & Christopher D Brown & Barbara E Engelhardt, 2016. "Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-39, July.
    2. Sai Li & T. Tony Cai & Hongzhe Li, 2022. "Transfer learning for high‐dimensional linear regression: Prediction, estimation and minimax optimality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 149-173, February.
    3. Christine B. Peterson & Nathan Osborne & Francesco C. Stingo & Pierrick Bourgeat & James D. Doecke & Marina Vannucci, 2020. "Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(4), pages 1120-1132, December.
    4. Ghulam Muhiuddin & Sovan Samanta & Abdulrahman F. Aljohani & Abeer M. Alkhaibari, 2023. "A Study on Graph Centrality Measures of Different Diseases Due to DNA Sequencing," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    5. Erdogan Taskesen & Marcel J T Reinders, 2016. "2D Representation of Transcriptomes by t-SNE Exposes Relatedness between Human Tissues," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-6, February.
    6. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    7. Samantha Riccadonna & Giuseppe Jurman & Roberto Visintainer & Michele Filosi & Cesare Furlanello, 2016. "DTW-MIC Coexpression Networks from Time-Course Data," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    2. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    3. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    4. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    5. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    6. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    7. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    8. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
    9. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2022. "Jewel 2.0 : An Improved Joint Estimation Method for Multiple Gaussian Graphical Models," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    10. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
    12. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    13. Huitong Qiu & Fang Han & Han Liu & Brian Caffo, 2016. "Joint estimation of multiple graphical models from high dimensional time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 487-504, March.
    14. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    15. Christine B. Peterson & Nathan Osborne & Francesco C. Stingo & Pierrick Bourgeat & James D. Doecke & Marina Vannucci, 2020. "Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(4), pages 1120-1132, December.
    16. Mingyang Ren & Sanguo Zhang & Qingzhao Zhang & Shuangge Ma, 2022. "Gaussian graphical model‐based heterogeneity analysis via penalized fusion," Biometrics, The International Biometric Society, vol. 78(2), pages 524-535, June.
    17. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    18. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
    19. Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
    20. Dallakyan, Aramayis & Kim, Rakheon & Pourahmadi, Mohsen, 2022. "Time series graphical lasso and sparse VAR estimation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.