IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47767-7.html
   My bibliography  Save this article

Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis

Author

Listed:
  • Lucas Serra Moncadas

    (University of Zurich)

  • Cyrill Hofer

    (University of Zurich)

  • Paul-Adrian Bulzu

    (Biology Centre of the Czech Academy of Sciences)

  • Jakob Pernthaler

    (University of Zurich)

  • Adrian-Stefan Andrei

    (University of Zurich)

Abstract

The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.

Suggested Citation

  • Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47767-7
    DOI: 10.1038/s41467-024-47767-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47767-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47767-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edward Geisinger & Nadav J. Mortman & Yunfei Dai & Murat Cokol & Sapna Syal & Andrew Farinha & Delaney G. Fisher & Amy Y. Tang & David W. Lazinski & Stephen Wood & Jon Anthony & Tim Opijnen & Ralph R., 2020. "Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Chirag Jain & Luis M. Rodriguez-R & Adam M. Phillippy & Konstantinos T. Konstantinidis & Srinivas Aluru, 2018. "High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Edward Geisinger & Nadav J. Mortman & Yunfei Dai & Murat Cokol & Sapna Syal & Andrew Farinha & Delaney G. Fisher & Amy Y. Tang & David W. Lazinski & Stephen Wood & Jon Anthony & Tim Opijnen & Ralph R., 2020. "Author Correction: Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    4. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 512(7514), pages 310-313, August.
    5. Sheila M Reynolds & Lukas Käll & Michael E Riffle & Jeff A Bilmes & William Stafford Noble, 2008. "Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-14, November.
    6. Xukang Shen & Siliang Song & Chuan Li & Jianzhi Zhang, 2022. "Synonymous mutations in representative yeast genes are mostly strongly non-neutral," Nature, Nature, vol. 606(7915), pages 725-731, June.
    7. Akintunde Emiola & Julia Oh, 2018. "High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Lynn J. Rothschild & Rocco L. Mancinelli, 2001. "Life in extreme environments," Nature, Nature, vol. 409(6823), pages 1092-1101, February.
    9. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "Correction: Corrigendum: A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 514(7522), pages 394-394, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Leshchiner & Federico Rosconi & Bharathi Sundaresh & Emily Rudmann & Luisa Maria Nieto Ramirez & Andrew T. Nishimoto & Stephen J. Wood & Bimal Jana & Noemí Buján & Kaicheng Li & Jianmin Gao & M, 2022. "A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Anzhou Ma & Jiejie Zhang & Guohua Liu & Xuliang Zhuang & Guoqiang Zhuang, 2022. "Cryosphere Microbiome Biobanks for Mountain Glaciers in China," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    3. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Andrew M. Hogan & A. S. M. Zisanur Rahman & Anna Motnenko & Aakash Natarajan & Dustin T. Maydaniuk & Beltina León & Zayra Batun & Armando Palacios & Alejandra Bosch & Silvia T. Cardona, 2023. "Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Bi-Qing Li & Le-Le Hu & Lei Chen & Kai-Yan Feng & Yu-Dong Cai & Kuo-Chen Chou, 2012. "Prediction of Protein Domain with mRMR Feature Selection and Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    6. Yan-Ling Qi & Ya-Ting Chen & Yuan-Guo Xie & Yu-Xian Li & Yang-Zhi Rao & Meng-Meng Li & Qi-Jun Xie & Xing-Ru Cao & Lei Chen & Yan-Ni Qu & Zhen-Xuan Yuan & Zhi-Chao Xiao & Lu Lu & Jian-Yu Jiao & Wen-She, 2024. "Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. M. C. Rühlemann & C. Bang & J. F. Gogarten & B. M. Hermes & M. Groussin & S. Waschina & M. Poyet & M. Ulrich & C. Akoua-Koffi & T. Deschner & J. J. Muyembe-Tamfum & M. M. Robbins & M. Surbeck & R. M. , 2024. "Functional host-specific adaptation of the intestinal microbiome in hominids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Louis N. Irwin & Abel Méndez & Alberto G. Fairén & Dirk Schulze-Makuch, 2014. "Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy," Challenges, MDPI, vol. 5(1), pages 1-16, May.
    9. Ling Zhong & Menghan Zhang & Libing Sun & Yu Yang & Bo Wang & Haibing Yang & Qiang Shen & Yu Xia & Jiarui Cui & Hui Hang & Yi Ren & Bo Pang & Xiangyu Deng & Yahui Zhan & Heng Li & Zhemin Zhou, 2023. "Distributed genotyping and clustering of Neisseria strains reveal continual emergence of epidemic meningococcus over a century," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Aleksandar Stanojković & Svatopluk Skoupý & Hanna Johannesson & Petr Dvořák, 2024. "The global speciation continuum of the cyanobacterium Microcoleus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Xin Fan & Rong-Chen Dai & Shu Zhang & Yuan-Yuan Geng & Mei Kang & Da-Wen Guo & Ya-Ning Mei & Yu-Hong Pan & Zi-Yong Sun & Ying-Chun Xu & Jie Gong & Meng Xiao, 2023. "Tandem gene duplications contributed to high-level azole resistance in a rapidly expanding Candida tropicalis population," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Lucie Semenec & Amy K. Cain & Catherine J. Dawson & Qi Liu & Hue Dinh & Hannah Lott & Anahit Penesyan & Ram Maharjan & Francesca L. Short & Karl A. Hassan & Ian T. Paulsen, 2023. "Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Corentin Hochart & Lucas Paoli & Hans-Joachim Ruscheweyh & Guillem Salazar & Emilie Boissin & Sarah Romac & Julie Poulain & Guillaume Bourdin & Guillaume Iwankow & Clémentine Moulin & Maren Ziegler & , 2023. "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Daniel P. Morreale & Eric A. Porsch & Brad K. Kern & Joseph W. Geme & Paul J. Planet, 2023. "Acquisition, co-option, and duplication of the rtx toxin system and the emergence of virulence in Kingella," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Esmeralda Vicedo & Avner Schlessinger & Burkhard Rost, 2015. "Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    16. Xiyang Dong & Yongyi Peng & Muhua Wang & Laura Woods & Wenxue Wu & Yong Wang & Xi Xiao & Jiwei Li & Kuntong Jia & Chris Greening & Zongze Shao & Casey R. J. Hubert, 2023. "Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Ross Corkrey & Tom A McMeekin & John P Bowman & David A Ratkowsky & June Olley & Tom Ross, 2014. "Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.
    18. Antonia E Dalziel & Steven Delean & Sarah Heinrich & Phillip Cassey, 2016. "Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-24, October.
    19. Fabio Alfieri & Giulio Caravagna & Martin H. Schaefer, 2023. "Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47767-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.