IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7883d10.1038_s41586-021-04043-8.html
   My bibliography  Save this article

Disease variant prediction with deep generative models of evolutionary data

Author

Listed:
  • Jonathan Frazer

    (Harvard Medical School)

  • Pascal Notin

    (University of Oxford)

  • Mafalda Dias

    (Harvard Medical School)

  • Aidan Gomez

    (University of Oxford)

  • Joseph K. Min

    (Harvard Medical School)

  • Kelly Brock

    (Harvard Medical School)

  • Yarin Gal

    (University of Oxford)

  • Debora S. Marks

    (Harvard Medical School
    Broad Institute of Harvard and MIT)

Abstract

Quantifying the pathogenicity of protein variants in human disease-related genes would have a marked effect on clinical decisions, yet the overwhelming majority (over 98%) of these variants still have unknown consequences1–3. In principle, computational methods could support the large-scale interpretation of genetic variants. However, state-of-the-art methods4–10 have relied on training machine learning models on known disease labels. As these labels are sparse, biased and of variable quality, the resulting models have been considered insufficiently reliable11. Here we propose an approach that leverages deep generative models to predict variant pathogenicity without relying on labels. By modelling the distribution of sequence variation across organisms, we implicitly capture constraints on the protein sequences that maintain fitness. Our model EVE (evolutionary model of variant effect) not only outperforms computational approaches that rely on labelled data but also performs on par with, if not better than, predictions from high-throughput experiments, which are increasingly used as evidence for variant classification12–16. We predict the pathogenicity of more than 36 million variants across 3,219 disease genes and provide evidence for the classification of more than 256,000 variants of unknown significance. Our work suggests that models of evolutionary information can provide valuable independent evidence for variant interpretation that will be widely useful in research and clinical settings.

Suggested Citation

  • Jonathan Frazer & Pascal Notin & Mafalda Dias & Aidan Gomez & Joseph K. Min & Kelly Brock & Yarin Gal & Debora S. Marks, 2021. "Disease variant prediction with deep generative models of evolutionary data," Nature, Nature, vol. 599(7883), pages 91-95, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7883:d:10.1038_s41586-021-04043-8
    DOI: 10.1038/s41586-021-04043-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04043-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04043-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lasse M. Blaabjerg & Nicolas Jonsson & Wouter Boomsma & Amelie Stein & Kresten Lindorff-Larsen, 2024. "SSEmb: A joint embedding of protein sequence and structure enables robust variant effect predictions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yaan J. Jang & Qi-Qi Qin & Si-Yu Huang & Arun T. John Peter & Xue-Ming Ding & Benoît Kornmann, 2024. "Accurate prediction of protein function using statistics-informed graph networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ziyi Zhou & Liang Zhang & Yuanxi Yu & Banghao Wu & Mingchen Li & Liang Hong & Pan Tan, 2024. "Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Kerr Ding & Michael Chin & Yunlong Zhao & Wei Huang & Binh Khanh Mai & Huanan Wang & Peng Liu & Yang Yang & Yunan Luo, 2024. "Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Daniel J. Diaz & Chengyue Gong & Jeffrey Ouyang-Zhang & James M. Loy & Jordan Wells & David Yang & Andrew D. Ellington & Alexandros G. Dimakis & Adam R. Klivans, 2024. "Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xuan Xie & Xia Sun & Yuheng Wang & Ben Lehner & Xianghua Li, 2023. "Dominance vs epistasis: the biophysical origins and plasticity of genetic interactions within and between alleles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Kian Hong Kock & Patrick K. Kimes & Stephen S. Gisselbrecht & Sachi Inukai & Sabrina K. Phanor & James T. Anderson & Gayatri Ramakrishnan & Colin H. Lipper & Dongyuan Song & Jesse V. Kurland & Julia M, 2024. "DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Yinglu Cui & Yanchun Chen & Jinyuan Sun & Tong Zhu & Hua Pang & Chunli Li & Wen-Chao Geng & Bian Wu, 2024. "Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Cheyenne Ziegler & Jonathan Martin & Claude Sinner & Faruck Morcos, 2023. "Latent generative landscapes as maps of functional diversity in protein sequence space," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Han Meng & Nengxiong Xu & Yunfu Zhu & Gang Mei, 2024. "Generating Stochastic Structural Planes Using Statistical Models and Generative Deep Learning Models: A Comparative Investigation," Mathematics, MDPI, vol. 12(16), pages 1-37, August.
    14. Nicki Skafte Detlefsen & Søren Hauberg & Wouter Boomsma, 2022. "Learning meaningful representations of protein sequences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Ertunc Erdil & Anton S. Becker & Moritz Schwyzer & Borja Martinez-Tellez & Jonatan R. Ruiz & Thomas Sartoretti & H. Alberto Vargas & A. Irene Burger & Alin Chirindel & Damian Wild & Nicola Zamboni & B, 2024. "Predicting standardized uptake value of brown adipose tissue from CT scans using convolutional neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Mofan Feng & Xiaoxi Wei & Xi Zheng & Liangjie Liu & Lin Lin & Manying Xia & Guang He & Yi Shi & Qing Lu, 2024. "Decoding Missense Variants by Incorporating Phase Separation via Machine Learning," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Mischan Vali-Pour & Solip Park & Jose Espinosa-Carrasco & Daniel Ortiz-Martínez & Ben Lehner & Fran Supek, 2022. "The impact of rare germline variants on human somatic mutation processes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    18. Lene Clausen & Vasileios Voutsinos & Matteo Cagiada & Kristoffer E. Johansson & Martin Grønbæk-Thygesen & Snehal Nariya & Rachel L. Powell & Magnus K. N. Have & Vibe H. Oestergaard & Amelie Stein & Do, 2024. "A mutational atlas for Parkin proteostasis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7883:d:10.1038_s41586-021-04043-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.