IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52430-2.html
   My bibliography  Save this article

High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices

Author

Listed:
  • Dinghui Chen

    (Northwestern Polytechnical University (NPU))

  • Zizheng Tong

    (Peking University)

  • Qiushi Rao

    (Peking University)

  • Xingchen Liu

    (Peking University)

  • Hong Meng

    (Peking University)

  • Wei Huang

    (Northwestern Polytechnical University (NPU))

Abstract

Black-to-transparent electrochromism is hailed as the holy grail of organic optoelectronics. Despite its potential, designing black electrochromic materials that fully absorb visible light remains a significant challenge. Electroactive materials that simultaneously possess excellent cyclic stability, fast switching times, and high coloration efficiency are rare. In this study, we successfully designed copolymers that fully absorb the entire visible spectrum by judiciously selecting four types of monomers. We incorporated two types of polar side chains to synergistically enhance the ionic conductivity of the copolymers, thus improving the performance of electrochromic devices. Among these electrochromic devices, the P2-a device exhibits cycling stability exceeding 105 cycles, and the P2-c device demonstrates a coloring/ bleaching time of 0.82 s/0.86 s and achieves a coloration efficiency of 1078 cm²/C. This study proposes a strategy for designing and synthesizing high-performance black electrochromic copolymers.

Suggested Citation

  • Dinghui Chen & Zizheng Tong & Qiushi Rao & Xingchen Liu & Hong Meng & Wei Huang, 2024. "High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52430-2
    DOI: 10.1038/s41467-024-52430-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52430-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52430-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ho-Hsiu Chou & Amanda Nguyen & Alex Chortos & John W.F. To & Chien Lu & Jianguo Mei & Tadanori Kurosawa & Won-Gyu Bae & Jeffrey B.-H. Tok & Zhenan Bao, 2015. "A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Qiang Zhang & Chou-Yi Tsai & Lain-Jong Li & Der-Jang Liaw, 2019. "Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    4. Ting Xu & Erich C. Walter & Amit Agrawal & Christopher Bohn & Jeyavel Velmurugan & Wenqi Zhu & Henri J. Lezec & A. Alec Talin, 2016. "High-contrast and fast electrochromic switching enabled by plasmonics," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    5. Ran Li & Xiaoyuan Ma & Jianmin Li & Jun Cao & Hongze Gao & Tianshu Li & Xiaoyu Zhang & Lichao Wang & Qinghong Zhang & Gang Wang & Chengyi Hou & Yaogang Li & Tomás Palacios & Yuxuan Lin & Hongzhi Wang , 2021. "Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Fei Yu & Wenbo Liu & Si-Wen Ke & Mohamedally Kurmoo & Jing-Lin Zuo & Qichun Zhang, 2020. "Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    2. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    4. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    5. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    6. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    7. Qing Hao & Xiao-Rui Ren & Yichen Chen & Chao Zhao & Jingyi Xu & Dong Wang & Hong Liu, 2023. "A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    9. Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Kyeong-Yoon Baek & Woocheol Lee & Jonghoon Lee & Jaeyoung Kim & Heebeom Ahn & Jae Il Kim & Junwoo Kim & Hyungbin Lim & Jiwon Shin & Yoon-Joo Ko & Hyeon-Dong Lee & Richard H. Friend & Tae-Woo Lee & Jeo, 2022. "Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. René Itten & Matthias Stucki, 2017. "Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts," Energies, MDPI, vol. 10(7), pages 1-18, June.
    12. Jiao Geng & Liye Xu & Wei Yan & Liping Shi & Min Qiu, 2023. "High-speed laser writing of structural colors for full-color inkless printing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    14. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    16. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    17. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.
    18. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    19. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    20. Shoieb Shaik & Ziyou Zhou & Zhongliang Ouyang & Rebecca Han & Dawen Li, 2021. "Polymer Additive Assisted Fabrication of Compact and Ultra-Smooth Perovskite Thin Films with Fast Lamp Annealing," Energies, MDPI, vol. 14(9), pages 1-10, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52430-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.