IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9011.html
   My bibliography  Save this article

A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

Author

Listed:
  • Ho-Hsiu Chou

    (Stanford University)

  • Amanda Nguyen

    (Stanford University)

  • Alex Chortos

    (Materials Science and Engineering, Stanford University)

  • John W.F. To

    (Stanford University)

  • Chien Lu

    (Stanford University)

  • Jianguo Mei

    (Stanford University)

  • Tadanori Kurosawa

    (Stanford University)

  • Won-Gyu Bae

    (Stanford University)

  • Jeffrey B.-H. Tok

    (Stanford University)

  • Zhenan Bao

    (Stanford University
    Materials Science and Engineering, Stanford University)

Abstract

Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin’s colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

Suggested Citation

  • Ho-Hsiu Chou & Amanda Nguyen & Alex Chortos & John W.F. To & Chien Lu & Jianguo Mei & Tadanori Kurosawa & Won-Gyu Bae & Jeffrey B.-H. Tok & Zhenan Bao, 2015. "A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9011
    DOI: 10.1038/ncomms9011
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9011
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changil Son & Jinyoung Kim & Dongwon Kang & Seojoung Park & Chaeyeong Ryu & Dahye Baek & Geonyoung Jeong & Sanggyun Jeong & Seonghyeon Ahn & Chanoong Lim & Yundon Jeong & Jeongin Eom & Jung-Hoon Park , 2024. "Behavioral biometric optical tactile sensor for instantaneous decoupling of dynamic touch signals in real time," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Dinghui Chen & Zizheng Tong & Qiushi Rao & Xingchen Liu & Hong Meng & Wei Huang, 2024. "High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jinhui Zhang & Haimin Yao & Jiaying Mo & Songyue Chen & Yu Xie & Shenglin Ma & Rui Chen & Tao Luo & Weisong Ling & Lifeng Qin & Zuankai Wang & Wei Zhou, 2022. "Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Dongjin Kim & Baekgyeom Kim & Bongsu Shin & Dongwook Shin & Chang-Kun Lee & Jae-Seung Chung & Juwon Seo & Yun-Tae Kim & Geeyoung Sung & Wontaek Seo & Sunil Kim & Sunghoon Hong & Sungwoo Hwang & Seungy, 2022. "Actuating compact wearable augmented reality devices by multifunctional artificial muscle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Kyowon Kang & Seongryeol Ye & Chanho Jeong & Jinmo Jeong & Yeong-sinn Ye & Jin-Young Jeong & Yu-Jin Kim & Selin Lim & Tae Hee Kim & Kyung Yeun Kim & Jong Uk Kim & Gwan In Kim & Do Hoon Chun & Kiho Kim, 2024. "Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.