IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38353-4.html
   My bibliography  Save this article

Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation

Author

Listed:
  • Si-Zhe Sheng

    (University of Science and Technology of China)

  • Jin-Long Wang

    (Southern University of Science and Technology)

  • Bin Zhao

    (University of Science and Technology of China)

  • Zhen He

    (Southern University of Science and Technology)

  • Xue-Fei Feng

    (University of Science and Technology of China)

  • Qi-Guo Shang

    (University of Science and Technology of China)

  • Cheng Chen

    (University of Science and Technology of China)

  • Gang Pei

    (University of Science and Technology of China)

  • Jun Zhou

    (University of Science and Technology of China)

  • Jian-Wei Liu

    (University of Science and Technology of China)

  • Shu-Hong Yu

    (University of Science and Technology of China
    Southern University of Science and Technology)

Abstract

Smart window is an attractive option for efficient heat management to minimize energy consumption and improve indoor living comfort owing to their optical properties of adjusting sunlight. To effectively improve the sunlight modulation and heat management capability of smart windows, here, we propose a co-assembly strategy to fabricate the electrochromic and thermochromic smart windows with tunable components and ordered structures for the dynamic regulation of solar radiation. Firstly, to enhance both illumination and cooling efficiency in electrochromic windows, the aspect ratio and mixed type of Au nanorods are tuned to selectively absorb the near-infrared wavelength range of 760 to 1360 nm. Furthermore, when assembled with electrochromic W18O49 nanowires in the colored state, the Au nanorods exhibit a synergistic effect, resulting in a 90% reduction of near-infrared light and a corresponding 5 °C cooling effect under 1-sun irradiation. Secondly, to extend the fixed response temperature value to a wider range of 30–50 °C in thermochromic windows, the doping amount and mixed type of W-VO2 nanowires are carefully regulated. Last but not the least, the ordered assembly structure of the nanowires can greatly reduce the level of haze and enhance visibility in the windows.

Suggested Citation

  • Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38353-4
    DOI: 10.1038/s41467-023-38353-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38353-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38353-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lyu Zhou & Haomin Song & Jianwei Liang & Matthew Singer & Ming Zhou & Edgars Stegenburgs & Nan Zhang & Chen Xu & Tien Ng & Zongfu Yu & Boon Ooi & Qiaoqiang Gan, 2019. "A polydimethylsiloxane-coated metal structure for all-day radiative cooling," Nature Sustainability, Nature, vol. 2(8), pages 718-724, August.
    2. Michael T. Strand & Tyler S. Hernandez & Michael G. Danner & Andrew L. Yeang & Nathan Jarvey & Christopher J. Barile & Michael D. McGehee, 2021. "Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation," Nature Energy, Nature, vol. 6(5), pages 546-554, May.
    3. Michael J. Serpe, 2019. "Fine-tuned gel particles enable smart windows for energy efficiency," Nature, Nature, vol. 565(7740), pages 438-439, January.
    4. Ting Xu & Erich C. Walter & Amit Agrawal & Christopher Bohn & Jeyavel Velmurugan & Wenqi Zhu & Henri J. Lezec & A. Alec Talin, 2016. "High-contrast and fast electrochromic switching enabled by plasmonics," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    5. Carsten Kortz & Alexander Hein & Marius Ciobanu & Lorenz Walder & Egbert Oesterschulze, 2019. "Complementary hybrid electrodes for high contrast electrochromic devices with fast response," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Sai Wang & Zuqiang Xu & Tingting Wang & Tangxin Xiao & Xiao-Yu Hu & Ying-Zhong Shen & Leyong Wang, 2018. "Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "The role of emissivity of the window surface inside and outside the atmospheric window in the radiative cooling effect," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    3. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Sheng, Mingfeng & Pan, Haodan & Xu, Dikai & Zhao, Dongliang, 2023. "Characterization and performance enhancement of radiative cooling on circular surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    6. Jiao Geng & Liye Xu & Wei Yan & Liping Shi & Min Qiu, 2023. "High-speed laser writing of structural colors for full-color inkless printing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    8. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Ziwei Fan & Taeseung Hwang & Sam Lin & Yixin Chen & Zi Jing Wong, 2024. "Directional thermal emission and display using pixelated non-imaging micro-optics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
    11. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    12. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Zhuofei Jia & Yiming Sui & Long Qian & Xi Ren & Yunxiang Zhao & Rui Yao & Lumeng Wang & Dongliang Chao & Cheng Yang, 2024. "Electrochromic windows with fast response and wide dynamic range for visible-light modulation without traditional electrodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Cheon Woo Moon & Youngji Kim & Jerome Kartham Hyun, 2022. "Active electrochemical high-contrast gratings as on/off switchable and color tunable pixels," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    16. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Gan Huang & Ashok R. Yengannagari & Kishin Matsumori & Prit Patel & Anurag Datla & Karina Trindade & Enkhlen Amarsanaa & Tonghan Zhao & Uwe Köhler & Dmitry Busko & Bryce S. Richards, 2024. "Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    19. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Renfu Zhang & Qinqi Zhou & Siyuan Huang & Yiwen Zhang & Rui-Tao Wen, 2024. "Capturing ion trapping and detrapping dynamics in electrochromic thin films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38353-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.