IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52159-y.html
   My bibliography  Save this article

Evolutionary dynamics of the successful expansion of pandemic Vibrio parahaemolyticus ST3 in Latin America

Author

Listed:
  • Amy Marie Campbell

    (University of Southampton, National Oceanography Centre
    Fisheries and Aquaculture Science (CEFAS))

  • Ronnie G. Gavilan

    (Instituto Nacional de Salud
    Autonomous University of Barcelona)

  • Michel Abanto Marin

    (Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera)

  • Chao Yang

    (Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences)

  • Chris Hauton

    (University of Southampton, National Oceanography Centre)

  • Ronny Aerle

    (Fisheries and Aquaculture Science (CEFAS))

  • Jaime Martinez-Urtaza

    (Fisheries and Aquaculture Science (CEFAS)
    Autonomous University of Barcelona)

Abstract

The underlying evolutionary mechanisms driving global expansions of pathogen strains are poorly understood. Vibrio parahaemolyticus is one of only two marine pathogens where variants have emerged in distinct climates globally. The success of a Vibrio parahaemolyticus clone (VpST3) in Latin America- the first spread identified outside its endemic region of tropical Asia- provided an invaluable opportunity to investigate mechanisms of VpST3 expansion into a distinct marine climate. A global collection of VpST3 isolates and novel Latin American isolates were used for evolutionary population genomics, pangenome analysis and combined with oceanic climate data. We found a VpST3 population (LatAm-VpST3) introduced in Latin America well before the emergence of this clone in India, previously considered the onset of the VpST3 epidemic. LatAm-VpST3 underwent successful adaptation to local conditions over its evolutionary divergence from Asian VpST3 isolates, to become dominant in Latin America. Selection signatures were found in genes providing resilience to the distinct marine climate. Core genome mutations and accessory gene presences that promoted survival over long dispersals or increased environmental fitness were associated with environmental conditions. These results provide novel insights into the global expansion of this successful V. parahaemolyticus clone into regions with different climate scenarios.

Suggested Citation

  • Amy Marie Campbell & Ronnie G. Gavilan & Michel Abanto Marin & Chao Yang & Chris Hauton & Ronny Aerle & Jaime Martinez-Urtaza, 2024. "Evolutionary dynamics of the successful expansion of pandemic Vibrio parahaemolyticus ST3 in Latin America," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52159-y
    DOI: 10.1038/s41467-024-52159-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52159-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52159-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amy Marie Campbell & Marie-Fanny Racault & Stephen Goult & Angus Laurenson, 2020. "Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables," IJERPH, MDPI, vol. 17(24), pages 1-24, December.
    2. Fernando P. Lima & David S. Wethey, 2012. "Three decades of high-resolution coastal sea surface temperatures reveal more than warming," Nature Communications, Nature, vol. 3(1), pages 1-13, January.
    3. Ankur Mutreja & Dong Wook Kim & Nicholas R. Thomson & Thomas R. Connor & Je Hee Lee & Samuel Kariuki & Nicholas J. Croucher & Seon Young Choi & Simon R. Harris & Michael Lebens & Swapan Kumar Niyogi &, 2011. "Evidence for several waves of global transmission in the seventh cholera pandemic," Nature, Nature, vol. 477(7365), pages 462-465, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomomichi Ogata & Marie-Fanny Racault & Masami Nonaka & Swadhin Behera, 2021. "Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    2. Sadie J. Ryan & Anna M. Stewart-Ibarra & Eunice Ordóñez-Enireb & Winnie Chu & Julia L. Finkelstein & Christine A. King & Luis E. Escobar & Christina Lupone & Froilan Heras & Erica Tauzer & Egan Waggon, 2018. "Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    3. Guillem Chust & Ernesto Villarino & Matthew McLean & Nova Mieszkowska & Lisandro Benedetti-Cecchi & Fabio Bulleri & Chiara Ravaglioli & Angel Borja & Iñigo Muxika & José A. Fernandes-Salvador & Leire , 2024. "Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Iliana Chollett & Rachel Collin & Carolina Bastidas & Aldo Cróquer & Peter M H Gayle & Eric Jordán-Dahlgren & Karen Koltes & Hazel Oxenford & Alberto Rodriguez-Ramirez & Ernesto Weil & Jahson Alemu & , 2017. "Widespread local chronic stressors in Caribbean coastal habitats," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-19, December.
    5. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    6. Alyce Taylor-Brown & Mokibul Hassan Afrad & Ashraful Islam Khan & Florent Lassalle & Md. Taufiqul Islam & Nabid Anjum Tanvir & Nicholas R. Thomson & Firdausi Qadri, 2023. "Genomic epidemiology of Vibrio cholerae during a mass vaccination campaign of displaced communities in Bangladesh," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. S. E. Perkins-Kirkpatrick & C. J. White & L. V. Alexander & D. Argüeso & G. Boschat & T. Cowan & J. P. Evans & M. Ekström & E. C. J. Oliver & A. Phatak & A. Purich, 2016. "Natural hazards in Australia: heatwaves," Climatic Change, Springer, vol. 139(1), pages 101-114, November.
    8. Chrispin Chaguza & Innocent Chibwe & David Chaima & Patrick Musicha & Latif Ndeketa & Watipaso Kasambara & Chimwemwe Mhango & Upendo L. Mseka & Joseph Bitilinyu-Bangoh & Bernard Mvula & Wakisa Kipandu, 2024. "Genomic insights into the 2022–2023Vibrio cholerae outbreak in Malawi," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Antoine Abou Fayad & Rayane Rafei & Elisabeth Njamkepo & Jana Ezzeddine & Hadi Hussein & Solara Sinno & Jose-Rita Gerges & Sara Barada & Ahmad Sleiman & Moubadda Assi & Maryo Baakliny & Lama Hamedeh &, 2024. "An unusual two-strain cholera outbreak in Lebanon, 2022-2023: a genomic epidemiology study," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Renjith VishnuRadhan & Divya David Thresyamma & Kamal Sarma & Grinson George & Prabhakar Shirodkar & Ponnumony Vethamony, 2015. "Influence of natural and anthropogenic factors on the water quality of the coastal waters around the South Andaman in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 309-331, August.
    11. Md Mamun Monir & Mohammad Tarequl Islam & Razib Mazumder & Dinesh Mondal & Kazi Sumaita Nahar & Marzia Sultana & Masatomo Morita & Makoto Ohnishi & Anwar Huq & Haruo Watanabe & Firdausi Qadri & Mustaf, 2023. "Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Yun Luo & Michael Payne & Sandeep Kaur & Sophie Octavia & Ruiting Lan, 2024. "Genomic evidence of two-staged transmission of the early seventh cholera pandemic," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Igor Belkin & Ming-An Lee, 2014. "Long-term variability of sea surface temperature in Taiwan Strait," Climatic Change, Springer, vol. 124(4), pages 821-834, June.
    14. Caitlin S Pepperell & Amanda M Casto & Andrew Kitchen & Julie M Granka & Omar E Cornejo & Eddie C Holmes & Bruce Birren & James Galagan & Marcus W Feldman, 2013. "The Role of Selection in Shaping Diversity of Natural M. tuberculosis Populations," PLOS Pathogens, Public Library of Science, vol. 9(8), pages 1-14, August.
    15. Thandavarayan Ramamurthy & Agila Kumari Pragasam & Alyce Taylor-Brown & Robert C. Will & Karthick Vasudevan & Bhabatosh Das & Sunil Kumar Srivastava & Goutam Chowdhury & Asish K. Mukhopadhyay & Shanta, 2022. "Vibrio cholerae O139 genomes provide a clue to why it may have failed to usher in the eighth cholera pandemic," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52159-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.