IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42968-y.html
   My bibliography  Save this article

Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex

Author

Listed:
  • Bryce D. Grier

    (Johns Hopkins School of Medicine
    Johns Hopkins University
    Bionic Sight)

  • Samuel Parkins

    (Johns Hopkins University
    Johns Hopkins University)

  • Jarra Omar

    (Johns Hopkins University)

  • Hey-Kyoung Lee

    (Johns Hopkins School of Medicine
    Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

Abstract

Somatostatin-positive (SOM) interneurons are integral for shaping cortical processing and their dynamic recruitment is likely necessary for adaptation to sensory experience and contextual information. We found that excitatory synapses on SOMs in layer 2/3 (L2/3) of primary visual cortex (V1) of mice can be categorized into fast (F)- and slow (S)-Types based on the kinetics of the AMPA receptor-mediated current. Each SOM contains both types of synapses in varying proportions. The majority of local pyramidal neurons (PCs) make unitary connections with SOMs using both types, followed by those utilizing only S-Type, and a minority with only F-Type. Sensory experience differentially regulates synapses on SOMs, such that local F-Type synapses change with visual deprivation and S-Type synapses undergo plasticity with crossmodal auditory deprivation. Our results demonstrate that the two types of excitatory synapses add richness to the SOM circuit recruitment and undergo selective plasticity enabling dynamic adaptation of the adult V1.

Suggested Citation

  • Bryce D. Grier & Samuel Parkins & Jarra Omar & Hey-Kyoung Lee, 2023. "Selective plasticity of fast and slow excitatory synapses on somatostatin interneurons in adult visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42968-y
    DOI: 10.1038/s41467-023-42968-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42968-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42968-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan R. Wilson & Caroline A. Runyan & Forea L. Wang & Mriganka Sur, 2012. "Division and subtraction by distinct cortical inhibitory networks in vivo," Nature, Nature, vol. 488(7411), pages 343-348, August.
    2. Yingjie Zhu & Wenhui Qiao & Kefei Liu & Huiyuan Zhong & Haishan Yao, 2015. "Control of response reliability by parvalbumin-expressing interneurons in visual cortex," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    3. Hillel Adesnik & William Bruns & Hiroki Taniguchi & Z. Josh Huang & Massimo Scanziani, 2012. "A neural circuit for spatial summation in visual cortex," Nature, Nature, vol. 490(7419), pages 226-231, October.
    4. Courtney E. Yaeger & Dario L. Ringach & Joshua T. Trachtenberg, 2019. "Neuromodulatory control of localized dendritic spiking in critical period cortex," Nature, Nature, vol. 567(7746), pages 100-104, March.
    5. Sandra J. Kuhlman & Nicholas D. Olivas & Elaine Tring & Taruna Ikrar & Xiangmin Xu & Joshua T. Trachtenberg, 2013. "A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex," Nature, Nature, vol. 501(7468), pages 543-546, September.
    6. Andreas J. Keller & Morgane M. Roth & Massimo Scanziani, 2020. "Feedback generates a second receptive field in neurons of the visual cortex," Nature, Nature, vol. 582(7813), pages 545-549, June.
    7. Karen L. Montey & Elizabeth M. Quinlan, 2011. "Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    8. P. M. Hartigan, 1985. "Computation of the Dip Statistic to Test for Unimodality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 320-325, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    4. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    6. Suren Basov & Svetlana Danilkina & David Prentice, 2020. "When Does Variety Increase with Quality?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(3), pages 463-487, May.
    7. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    8. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    9. Deversi, Marvin & Ispano, Alessandro & Schwardmann, Peter, 2021. "Spin doctors: An experiment on vague disclosure," European Economic Review, Elsevier, vol. 139(C).
    10. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Joshua H Goldwyn & Bradley R Slabe & Joseph B Travers & David Terman, 2018. "Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-23, July.
    12. Joerg Heining & Joerg Lingens, 2000. "Social Interaction in Regional Labour Markets," Regional and Urban Modeling 283600034, EcoMod.
    13. Thomas Miconi & Rufin VanRullen, 2016. "A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    14. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    15. Pfister, Roland & Wirth, Robert & Weller, Lisa & Foerster, Anna & Schwarz, Katharina, 2018. "Taking shortcuts: Cognitive conflict during motivated rule-breaking," MPRA Paper 95773, University Library of Munich, Germany.
    16. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    17. Ruxandra Barzan & Beyza Bozkurt & Mohammadreza M. Nejad & Sandra T. Süß & Tatjana Surdin & Hanna Böke & Katharina Spoida & Zohre Azimi & Michelle Grömmke & Dennis Eickelbeck & Melanie D. Mark & Lennar, 2024. "Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT2A)," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    19. Utz Weitzel & Michael Kirchler, 2022. "The Banker's Oath And Financial Advice," Working Papers 2022-13, Faculty of Economics and Statistics, Universität Innsbruck.
    20. Beth Fairfield & Ettore Ambrosini & Nicola Mammarella & Maria Montefinese, 2017. "Affective Norms for Italian Words in Older Adults: Age Differences in Ratings of Valence, Arousal and Dominance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42968-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.