IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v553y2018i7689d10.1038_nature25448.html
   My bibliography  Save this article

Midbrain circuits that set locomotor speed and gait selection

Author

Listed:
  • V. Caggiano

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    IBM T.J. Watson Research Center)

  • R. Leiras

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    University of Copenhagen)

  • H. Goñi-Erro

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    University of Copenhagen)

  • D. Masini

    (Laboratory of Molecular Neuropharmacology)

  • C. Bellardita

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    University of Copenhagen)

  • J. Bouvier

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    CNRS and Université Paris-11)

  • V. Caldeira

    (Mammalian Locomotor Laboratory, Karolinska Institutet)

  • G. Fisone

    (Laboratory of Molecular Neuropharmacology)

  • O. Kiehn

    (Mammalian Locomotor Laboratory, Karolinska Institutet
    University of Copenhagen)

Abstract

Locomotion is a fundamental motor function common to the animal kingdom. It is implemented episodically and adapted to behavioural needs, including exploration, which requires slow locomotion, and escape behaviour, which necessitates faster speeds. The control of these functions originates in brainstem structures, although the neuronal substrate(s) that support them have not yet been elucidated. Here we show in mice that speed and gait selection are controlled by glutamatergic excitatory neurons (GlutNs) segregated in two distinct midbrain nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). GlutNs in both of these regions contribute to the control of slower, alternating-gait locomotion, whereas only GlutNs in the CnF are able to elicit high-speed, synchronous-gait locomotion. Additionally, both the activation dynamics and the input and output connectivity matrices of GlutNs in the PPN and the CnF support explorative and escape locomotion, respectively. Our results identify two regions in the midbrain that act in conjunction to select context-dependent locomotor behaviours.

Suggested Citation

  • V. Caggiano & R. Leiras & H. Goñi-Erro & D. Masini & C. Bellardita & J. Bouvier & V. Caldeira & G. Fisone & O. Kiehn, 2018. "Midbrain circuits that set locomotor speed and gait selection," Nature, Nature, vol. 553(7689), pages 455-460, January.
  • Handle: RePEc:nat:nature:v:553:y:2018:i:7689:d:10.1038_nature25448
    DOI: 10.1038/nature25448
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25448
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Satoshi Koba & Nao Kumada & Emi Narai & Naoya Kataoka & Kazuhiro Nakamura & Tatsuo Watanabe, 2022. "A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Sandeep Sharma & Cecilia A. Badenhorst & Donovan M. Ashby & Stephanie A. Vito & Michelle A. Tran & Zahra Ghavasieh & Gurleen K. Grewal & Cole R. Belway & Alexander McGirr & Patrick J. Whelan, 2024. "Inhibitory medial zona incerta pathway drives exploratory behavior by inhibiting glutamatergic cuneiform neurons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Li-Ju Hsu & Maëlle Bertho & Ole Kiehn, 2023. "Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Coralie Hérent & Séverine Diem & Giovanni Usseglio & Gilles Fortin & Julien Bouvier, 2023. "Upregulation of breathing rate during running exercise by central locomotor circuits in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:553:y:2018:i:7689:d:10.1038_nature25448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.