A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32823-x
Download full text from publisher
References listed on IDEAS
- Paolo Capelli & Chiara Pivetta & Maria Soledad Esposito & Silvia Arber, 2017. "Locomotor speed control circuits in the caudal brainstem," Nature, Nature, vol. 551(7680), pages 373-377, November.
- V. Caggiano & R. Leiras & H. Goñi-Erro & D. Masini & C. Bellardita & J. Bouvier & V. Caldeira & G. Fisone & O. Kiehn, 2018. "Midbrain circuits that set locomotor speed and gait selection," Nature, Nature, vol. 553(7689), pages 455-460, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Li-Ju Hsu & Maëlle Bertho & Ole Kiehn, 2023. "Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Lin Yang & Mengdi Zhang & Yuan Zhou & Dongxiao Jiang & Lilong Yu & Lingyu Xu & Fan Fei & Wenkai Lin & Yanrong Zheng & Jiannong Wu & Yi Wang & Zhong Chen, 2024. "Histamine-tuned subicular circuit mediates alert-driven accelerated locomotion in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Maxime Lemieux & Narges Karimi & Frederic Bretzner, 2024. "Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Coralie Hérent & Séverine Diem & Giovanni Usseglio & Gilles Fortin & Julien Bouvier, 2023. "Upregulation of breathing rate during running exercise by central locomotor circuits in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Sasa Teng & Fenghua Zhen & Li Wang & Jose Canovas Schalchli & Jane Simko & Xinyue Chen & Hao Jin & Christopher D. Makinson & Yueqing Peng, 2022. "Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Sandeep Sharma & Cecilia A. Badenhorst & Donovan M. Ashby & Stephanie A. Vito & Michelle A. Tran & Zahra Ghavasieh & Gurleen K. Grewal & Cole R. Belway & Alexander McGirr & Patrick J. Whelan, 2024. "Inhibitory medial zona incerta pathway drives exploratory behavior by inhibiting glutamatergic cuneiform neurons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32823-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.