IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v545y2017i7653d10.1038_nature22324.html
   My bibliography  Save this article

Maintenance of persistent activity in a frontal thalamocortical loop

Author

Listed:
  • Zengcai V. Guo

    (Janelia Research Campus, HHMI
    Tsinghua University)

  • Hidehiko K. Inagaki

    (Janelia Research Campus, HHMI)

  • Kayvon Daie

    (Janelia Research Campus, HHMI)

  • Shaul Druckmann

    (Janelia Research Campus, HHMI)

  • Charles R. Gerfen

    (Laboratory of Systems Neuroscience, National Institute of Mental Health)

  • Karel Svoboda

    (Janelia Research Campus, HHMI)

Abstract

Persistent neural activity maintains information that connects past and future events. Models of persistent activity often invoke reverberations within local cortical circuits, but long-range circuits could also contribute. Neurons in the mouse anterior lateral motor cortex (ALM) have been shown to have selective persistent activity that instructs future actions. The ALM is connected bidirectionally with parts of the thalamus, including the ventral medial and ventral anterior–lateral nuclei. We recorded spikes from the ALM and thalamus during tactile discrimination with a delayed directional response. Here we show that, similar to ALM neurons, thalamic neurons exhibited selective persistent delay activity that predicted movement direction. Unilateral photoinhibition of delay activity in the ALM or thalamus produced contralesional neglect. Photoinhibition of the thalamus caused a short-latency and near-complete collapse of ALM activity. Similarly, photoinhibition of the ALM diminished thalamic activity. Our results show that the thalamus is a circuit hub in motor preparation and suggest that persistent activity requires reciprocal excitation across multiple brain areas.

Suggested Citation

  • Zengcai V. Guo & Hidehiko K. Inagaki & Kayvon Daie & Shaul Druckmann & Charles R. Gerfen & Karel Svoboda, 2017. "Maintenance of persistent activity in a frontal thalamocortical loop," Nature, Nature, vol. 545(7653), pages 181-186, May.
  • Handle: RePEc:nat:nature:v:545:y:2017:i:7653:d:10.1038_nature22324
    DOI: 10.1038/nature22324
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature22324
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature22324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xinjia & Zhang, Yan & Gu, Tianyi & Zheng, Muhua & Xu, Kesheng, 2024. "Mixed synaptic modulation and inhibitory plasticity perform complementary roles in metastable transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Bettina C Schwab & Daisuke Kase & Andrew Zimnik & Robert Rosenbaum & Marcello G Codianni & Jonathan E Rubin & Robert S Turner, 2020. "Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia–thalamic communication," PLOS Biology, Public Library of Science, vol. 18(10), pages 1-38, October.
    4. Yue Liu & Xiao-Jing Wang, 2024. "Flexible gating between subspaces in a neural network model of internally guided task switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Benjamin J. Griffiths & Tino Zaehle & Stefan Repplinger & Friedhelm C. Schmitt & Jürgen Voges & Simon Hanslmayr & Tobias Staudigl, 2022. "Rhythmic interactions between the mediodorsal thalamus and prefrontal cortex precede human visual perception," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Masashi Hasegawa & Ziyan Huang & Ricardo Paricio-Montesinos & Jan Gründemann, 2024. "Network state changes in sensory thalamus represent learned outcomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:545:y:2017:i:7653:d:10.1038_nature22324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.