IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31932-x.html
   My bibliography  Save this article

Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy

Author

Listed:
  • Yuhao Chen

    (University of South China
    University of South China
    University of Macau, Taipa)

  • Meng Du

    (University of South China
    University of South China)

  • Zhen Yuan

    (University of Macau, Taipa)

  • Zhiyi Chen

    (University of South China
    University of South China)

  • Fei Yan

    (Chinese Academy of Sciences)

Abstract

Bacteria-based tumor therapy has recently attracted wide attentions due to its unique capability in targeting tumors and preferentially colonizing the core area of the tumor. Various therapeutic genes are also harbored into these engineering bacteria to enhance their anti-tumor efficacy. However, it is difficult to spatiotemporally control the expression of these inserted genes in the tumor site. Here, we engineer an ultrasound-responsive bacterium (URB) which can induce the expression of exogenous genes in an ultrasound-controllable manner. Owing to the advantage of ultrasound in tissue penetration, an acoustic remote control of bacterial gene expression can be realized by designing a temperature-actuated genetic switch. Cytokine interferon-γ (IFN-γ), an important immune regulatory molecule that plays a significant role in tumor immunotherapy, is used to test the system. Our results show that brief hyperthermia induced by focused ultrasound promotes the expression of IFN-γ gene, improving anti-tumor efficacy of URB in vitro and in vivo. Our study provides an alternative strategy for bacteria-mediated tumor immunotherapy.

Suggested Citation

  • Yuhao Chen & Meng Du & Zhen Yuan & Zhiyi Chen & Fei Yan, 2022. "Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31932-x
    DOI: 10.1038/s41467-022-31932-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31932-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31932-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di-Wei Zheng & Ying Chen & Zi-Hao Li & Lu Xu & Chu-Xin Li & Bin Li & Jin-Xuan Fan & Si-Xue Cheng & Xian-Zheng Zhang, 2018. "Optically-controlled bacterial metabolite for cancer therapy," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. M. Omar Din & Tal Danino & Arthur Prindle & Matt Skalak & Jangir Selimkhanov & Kaitlin Allen & Ellixis Julio & Eta Atolia & Lev S. Tsimring & Sangeeta N. Bhatia & Jeff Hasty, 2016. "Synchronized cycles of bacterial lysis for in vivo delivery," Nature, Nature, vol. 536(7614), pages 81-85, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaokui Jin & Lingdong Jiang & Qianjun He, 2024. "Critical learning from industrial catalysis for nanocatalytic medicine," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yunmin Yang & Binbin Chu & Jiayi Cheng & Jiali Tang & Bin Song & Houyu Wang & Yao He, 2022. "Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Zhongmin Geng & Zhenping Cao & Rui Liu & Ke Liu & Jinyao Liu & Weihong Tan, 2021. "Aptamer-assisted tumor localization of bacteria for enhanced biotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Candice R. Gurbatri & Georgette A. Radford & Laura Vrbanac & Jongwon Im & Elaine M. Thomas & Courtney Coker & Samuel R. Taylor & YoungUk Jang & Ayelet Sivan & Kyu Rhee & Anas A. Saleh & Tiffany Chien , 2024. "Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Anna-Maria Makri Pistikou & Glenn A. O. Cremers & Bryan L. Nathalia & Theodorus J. Meuleman & Bas W. A. Bögels & Bruno V. Eijkens & Anne Dreu & Maarten T. H. Bezembinder & Oscar M. J. A. Stassen & Car, 2023. "Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Moy, Tiago & Pinto, Italo’Ivo L.D. & Rosas, Alexandre, 2020. "Finite number fluctuations in a three-state model with growing population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    8. Xiaotu Ma & Xiaolong Liang & Yao Li & Qingqing Feng & Keman Cheng & Nana Ma & Fei Zhu & Xinjing Guo & Yale Yue & Guangna Liu & Tianjiao Zhang & Jie Liang & Lei Ren & Xiao Zhao & Guangjun Nie, 2023. "Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    10. Neythen J Treloar & Alex J H Fedorec & Brian Ingalls & Chris P Barnes, 2020. "Deep reinforcement learning for the control of microbial co-cultures in bioreactors," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-18, April.
    11. Dinh-Huy Nguyen & Ari Chong & Yeongjin Hong & Jung-Joon Min, 2023. "Bioengineering of bacteria for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31932-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.