IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38063-x.html
   My bibliography  Save this article

Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies

Author

Listed:
  • Jeffrey A. Ruffolo

    (The Johns Hopkins University)

  • Lee-Shin Chu

    (The Johns Hopkins University)

  • Sai Pooja Mahajan

    (The Johns Hopkins University)

  • Jeffrey J. Gray

    (The Johns Hopkins University
    The Johns Hopkins University)

Abstract

Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold’s capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures.

Suggested Citation

  • Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38063-x
    DOI: 10.1038/s41467-023-38063-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38063-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38063-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Martin Steinegger & Johannes Söding, 2018. "Clustering huge protein sequence sets in linear time," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Aroop Sircar & Jeffrey J Gray, 2010. "SnugDock: Paratope Structural Optimization during Antibody-Antigen Docking Compensates for Errors in Antibody Homology Models," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-13, January.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Jared Adolf-Bryfogle & Oleks Kalyuzhniy & Michael Kubitz & Brian D Weitzner & Xiaozhen Hu & Yumiko Adachi & William R Schief & Roland L Dunbrack Jr., 2018. "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-38, April.
    7. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaid Taha & Mathieu Joseph François Crupi & Nouf Alluqmani & Duncan MacKenzie & Sydney Vallati & Jack Timothy Whelan & Faiha Fareez & Akram Alwithenani & Julia Petryk & Andrew Chen & Marcus Mathew Spi, 2024. "Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thillai V. Sekar & Eslam A. Elghonaimy & Katy L. Swancutt & Sebastian Diegeler & Isaac Gonzalez & Cassandra Hamilton & Peter Q. Leung & Jens Meiler & Cristina E. Martina & Michael Whitney & Todd A. Ag, 2023. "Simultaneous selection of nanobodies for accessible epitopes on immune cells in the tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Haohuai He & Bing He & Lei Guan & Yu Zhao & Feng Jiang & Guanxing Chen & Qingge Zhu & Calvin Yu-Chian Chen & Ting Li & Jianhua Yao, 2024. "De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Zsolt Fazekas & Dóra K. Menyhárd & András Perczel, 2024. "LoCoHD: a metric for comparing local environments of proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. David Moi & Shunsuke Nishio & Xiaohui Li & Clari Valansi & Mauricio Langleib & Nicolas G. Brukman & Kateryna Flyak & Christophe Dessimoz & Daniele de Sanctis & Kathryn Tunyasuvunakool & John Jumper & , 2022. "Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Patrick Roth & Jean-Marc Jeckelmann & Inken Fender & Zöhre Ucurum & Thomas Lemmin & Dimitrios Fotiadis, 2024. "Structure and mechanism of a phosphotransferase system glucose transporter," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Ivan Koludarov & Tobias Senoner & Timothy N. W. Jackson & Daniel Dashevsky & Michael Heinzinger & Steven D. Aird & Burkhard Rost, 2023. "Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Junhui Peng & Li Zhao, 2024. "The origin and structural evolution of de novo genes in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Melanie A. Orlando & Hunter J. T. Pouillon & Saikat Mandal & Lee Kroos & Benjamin J. Orlando, 2024. "Substrate engagement by the intramembrane metalloprotease SpoIVFB," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Chulwon Choi & Jungnam Bae & Seonghan Kim & Seho Lee & Hyunook Kang & Jinuk Kim & Injin Bang & Kiheon Kim & Won-Ki Huh & Chaok Seok & Hahnbeom Park & Wonpil Im & Hee-Jung Choi, 2023. "Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Nicolas Papadopoulos & Audrey Nédélec & Allison Derenne & Teodor Asvadur Şulea & Christian Pecquet & Ilyas Chachoua & Gaëlle Vertenoeil & Thomas Tilmant & Andrei-Jose Petrescu & Gabriel Mazzucchelli &, 2023. "Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38063-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.