IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51504-5.html
   My bibliography  Save this article

Spatially controllable and mechanically switchable isomorphous organoferroeleastic crystal optical waveguides and networks

Author

Listed:
  • Subham Ranjan

    (Kanazawa-ku)

  • Avulu Vinod Kumar

    (University of Hyderabad)

  • Rajadurai Chandrasekar

    (University of Hyderabad)

  • Satoshi Takamizawa

    (Kanazawa-ku)

Abstract

The precise, reversible, and diffusionless shape-switching ability of organic ferroelastic crystals, while maintaining their structural integrity, positions them as promising materials for next-generation hybrid photonic devices. Herein, we present versatile bi-directional ferroelasticity and optical waveguide properties of three isomorphous, halogen-based, Schiff base organic crystals. These crystals exhibit sharp bending at multiple interfaces driven by molecular movement around the CH = N bond and subsequent 180° rotational twinning, offering controlled light path manipulation. The ferroelastic nature of these crystals allowed the construction of robust hybrid photonic structures, including Z-shaped configurations, closed-loop networks, and staircase-like hybrid optical waveguides. This study highlights the potential of shape-switchable organoferroelastic crystals as waveguides for applications in programmable photonic devices.

Suggested Citation

  • Subham Ranjan & Avulu Vinod Kumar & Rajadurai Chandrasekar & Satoshi Takamizawa, 2024. "Spatially controllable and mechanically switchable isomorphous organoferroeleastic crystal optical waveguides and networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51504-5
    DOI: 10.1038/s41467-024-51504-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51504-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51504-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & Panče Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Qi Di & Xiaokong Liu & Liang Li & Panče Naumov & Hongyu Zhang, 2023. "Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Ming-Peng Zhuo & Jun-Jie Wu & Xue-Dong Wang & Yi-Chen Tao & Yi Yuan & Liang-Sheng Liao, 2019. "Hierarchical self-assembly of organic heterostructure nanowires," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Kiumars Aryana & John A. Tomko & Ran Gao & Eric R. Hoglund & Takanori Mimura & Sara Makarem & Alejandro Salanova & Md Shafkat Bin Hoque & Thomas W. Pfeifer & David H. Olson & Jeffrey L. Braun & Joyeet, 2022. "Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3)," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Qi Di & Xiaokong Liu & Liang Li & Panče Naumov & Hongyu Zhang, 2023. "Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Hongtu Xu & Huan Liang & Yang Yang & Yawen Liu & Enjian He & Zhijun Yang & Yixuan Wang & Yen Wei & Yan Ji, 2024. "Rejuvenating liquid crystal elastomers for self-growth," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ming-Peng Zhuo & Xiao Wei & Yuan-Yuan Li & Ying-Li Shi & Guang-Peng He & Huixue Su & Ke-Qin Zhang & Jin-Ping Guan & Xue-Dong Wang & Yuchen Wu & Liang-Sheng Liao, 2024. "Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xuesong Yang & Linfeng Lan & Liang Li & Jinyang Yu & Xiaokong Liu & Ying Tao & Quan-Hong Yang & Panče Naumov & Hongyu Zhang, 2023. "Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Xiaokong Liu & Yilong Song & Xueying Yang & Qingfeng Dong & Liang Li & Panče Naumov & Hongyu Zhang, 2022. "Electrically conductive hybrid organic crystals as flexible optical waveguides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Qiang Lv & Xue-Dong Wang & Yue Yu & Ming-Peng Zhuo & Min Zheng & Liang-Sheng Liao, 2022. "Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51504-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.