IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51474-8.html
   My bibliography  Save this article

Emergent constraints on future Amazon climate change-induced carbon loss using past global warming trends

Author

Listed:
  • Irina Melnikova

    (National Institute for Environmental Studies (NIES))

  • Tokuta Yokohata

    (National Institute for Environmental Studies (NIES))

  • Akihiko Ito

    (National Institute for Environmental Studies (NIES)
    The University of Tokyo)

  • Kazuya Nishina

    (National Institute for Environmental Studies (NIES))

  • Kaoru Tachiiri

    (National Institute for Environmental Studies (NIES)
    Japan Agency for Marine-Earth Science and Technology)

  • Hideo Shiogama

    (National Institute for Environmental Studies (NIES))

Abstract

Reducing uncertainty in the response of the Amazon rainforest, a vital component of the Earth system, to future climate change is crucial for refining climate projections. Here we demonstrate an emergent constraint (EC) on the future response of the Amazon carbon cycle to climate change across CMIP6 Earth system models. Models that overestimate past global warming trends, tend to estimate hotter and drier future Amazon conditions, driven by northward shifts of the intertropical convergence zone over the Atlantic Ocean, causing greater Amazon carbon loss. The proposed EC changes the mean CMIP6 Amazon climate-induced carbon loss estimate (excluding CO2 fertilisation and land-use change impacts) from −0.27 (−0.59–0.05) to −0.16 (−0.42–0.10) GtC year−1 at 4.4 °C warming level, reducing the variance by 34%. This study implies that climate-induced carbon loss in the Amazon rainforest by 2100 is less than thought and that past global temperature trends can be used to refine regional carbon cycle projections.

Suggested Citation

  • Irina Melnikova & Tokuta Yokohata & Akihiko Ito & Kazuya Nishina & Kaoru Tachiiri & Hideo Shiogama, 2024. "Emergent constraints on future Amazon climate change-induced carbon loss using past global warming trends," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51474-8
    DOI: 10.1038/s41467-024-51474-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51474-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51474-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Cox & David Pearson & Ben B. Booth & Pierre Friedlingstein & Chris Huntingford & Chris D. Jones & Catherine M. Luke, 2013. "Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability," Nature, Nature, vol. 494(7437), pages 341-344, February.
    2. Alex Hall & Peter Cox & Chris Huntingford & Stephen Klein, 2019. "Progressing emergent constraints on future climate change," Nature Climate Change, Nature, vol. 9(4), pages 269-278, April.
    3. Bernardo M. Flores & Encarni Montoya & Boris Sakschewski & Nathália Nascimento & Arie Staal & Richard A. Betts & Carolina Levis & David M. Lapola & Adriane Esquível-Muelbert & Catarina Jakovac & Carlo, 2024. "Critical transitions in the Amazon forest system," Nature, Nature, vol. 626(7999), pages 555-564, February.
    4. Zeke Hausfather & Kate Marvel & Gavin A. Schmidt & John W. Nielsen-Gammon & Mark Zelinka, 2022. "Climate simulations: recognize the ‘hot model’ problem," Nature, Nature, vol. 605(7908), pages 26-29, May.
    5. Peter M. Cox & Mark S. Williamson & Pierre Friedlingstein & Chris D. Jones & Nina Raoult & Joeri Rogelj & Rebecca M. Varney, 2024. "Emergent constraints on carbon budgets as a function of global warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Hideo Shiogama & Seita Emori & Naota Hanasaki & Manabu Abe & Yuji Masutomi & Kiyoshi Takahashi & Toru Nozawa, 2011. "Observational constraints indicate risk of drying in the Amazon basin," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    7. Julia K. Green & Sonia I. Seneviratne & Alexis M. Berg & Kirsten L. Findell & Stefan Hagemann & David M. Lawrence & Pierre Gentine, 2019. "Large influence of soil moisture on long-term terrestrial carbon uptake," Nature, Nature, vol. 565(7740), pages 476-479, January.
    8. S. E. Chadburn & E. J. Burke & P. M. Cox & P. Friedlingstein & G. Hugelius & S. Westermann, 2017. "An observation-based constraint on permafrost loss as a function of global warming," Nature Climate Change, Nature, vol. 7(5), pages 340-344, May.
    9. Hideo Shiogama & Masahiro Watanabe & Hyungjun Kim & Nagio Hirota, 2022. "Emergent constraints on future precipitation changes," Nature, Nature, vol. 602(7898), pages 612-616, February.
    10. Alexander J. Winkler & Ranga B. Myneni & Georgii A. Alexandrov & Victor Brovkin, 2019. "Earth system models underestimate carbon fixation by plants in the high latitudes," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    11. Rebecca M. Varney & Sarah E. Chadburn & Pierre Friedlingstein & Eleanor J. Burke & Charles D. Koven & Gustaf Hugelius & Peter M. Cox, 2020. "A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    12. Luciana V. Gatti & Luana S. Basso & John B. Miller & Manuel Gloor & Lucas Gatti Domingues & Henrique L. G. Cassol & Graciela Tejada & Luiz E. O. C. Aragão & Carlos Nobre & Wouter Peters & Luciano Mara, 2021. "Amazonia as a carbon source linked to deforestation and climate change," Nature, Nature, vol. 595(7867), pages 388-393, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Chao Li & Jieyu Liu & Fujun Du & Francis W. Zwiers & Guolin Feng, 2025. "Increasing certainty in projected local extreme precipitation change," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Yan Yu & Jiafu Mao & Stan D. Wullschleger & Anping Chen & Xiaoying Shi & Yaoping Wang & Forrest M. Hoffman & Yulong Zhang & Eric Pierce, 2022. "Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tessa Möller & Annika Ernest Högner & Carl-Friedrich Schleussner & Samuel Bien & Niklas H. Kitzmann & Robin D. Lamboll & Joeri Rogelj & Jonathan F. Donges & Johan Rockström & Nico Wunderling, 2024. "Achieving net zero greenhouse gas emissions critical to limit climate tipping risks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jens Terhaar & Linus Vogt & Nicholas P. Foukal, 2025. "Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Wenyu Zhou & L. Ruby Leung & Nicholas Siler & Jian Lu, 2023. "Future precipitation increase constrained by climatological pattern of cloud effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Araujo, Rafael & Costa, Francisco J M & Sant'Anna, Marcelo, 2020. "Efficient Conservation of the Brazilian Amazon: Estimates from a Dynamic Model," SocArXiv 8yfr7_v1, Center for Open Science.
    9. Adriane Terezinha Schneider & Rosangela Rodrigues Dias & Mariany Costa Deprá & Darissa Alves Dutra & Richard Luan Silva Machado & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lo, 2024. "The Intersectionality Between Amazon and Commodities Production: A Close Look at Sustainability," Land, MDPI, vol. 13(10), pages 1-18, October.
    10. World Bank, "undated". "Consolidating the Recovery," World Bank Publications - Reports 37244, The World Bank Group.
    11. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Jianzhuang Pang & Huilan Zhang, 2023. "Global map of a comprehensive drought/flood index and analysis of controlling environmental factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 267-293, March.
    14. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    15. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    18. Mohsen Khezri, 2025. "Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis," Data, MDPI, vol. 10(2), pages 1-21, January.
    19. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    20. Callesen, I. & Magnussen, A., 2021. "TransparC2U–A two-pool, pedology oriented forest soil carbon simulation model aimed at user investigations of multiple uncertainties," Ecological Modelling, Elsevier, vol. 453(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51474-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.