IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53674-8.html
   My bibliography  Save this article

Scalable all polymer dielectrics with self-assembled nanoscale multiboundary exhibiting superior high temperature capacitive performance

Author

Listed:
  • Qiyan Zhang

    (Shenzhen University)

  • Qiaohui Xie

    (Shenzhen University)

  • Tao Wang

    (Shenzhen University)

  • Shuangwu Huang

    (Shenzhen University)

  • Qiming Zhang

    (The Pennsylvania State University)

Abstract

Polymers are key dielectric materials for energy storage capacitors in advanced electronics and electric power systems due to their high breakdown strengths, low loss, great reliability, lightweight, and low cost. However, their electric and dielectric performance deteriorates at elevated temperatures, making them unable to meet the rising demand for harsh-environment electronics such as electric vehicles, renewable energy, and electrified transportation. Here, we present an all-polymer nanostructured dielectric material that achieves a discharged energy density of 7.1 J/cm³ with a charge-discharge efficiency of 90% at 150°C, outperforming the existing dielectric polymers and representing more than a twofold improvement in discharged energy density compared with polyetherimide. The self-assembled nano-scale multiboundaries effectively impede the charge injection and excitation, leading to more than one order of magnitude lower leakage current density than the pristine polymer matrix PEI at high electric fields and elevated temperature. In addition, the film processing is simple, straightforward, and low cost, thus this all-polymer nanostructured dielectric material strategy is suitable for the mass production of dielectric polymer films for high-temperature capacitive energy storage.

Suggested Citation

  • Qiyan Zhang & Qiaohui Xie & Tao Wang & Shuangwu Huang & Qiming Zhang, 2024. "Scalable all polymer dielectrics with self-assembled nanoscale multiboundary exhibiting superior high temperature capacitive performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53674-8
    DOI: 10.1038/s41467-024-53674-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53674-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53674-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Chen & Yao Zhou & Xingyi Huang & Chunyang Yu & Donglin Han & Ao Wang & Yingke Zhu & Kunming Shi & Qi Kang & Pengli Li & Pingkai Jiang & Xiaoshi Qian & Hua Bao & Shengtao Li & Guangning Wu & Xinyua, 2023. "Ladderphane copolymers for high-temperature capacitive energy storage," Nature, Nature, vol. 615(7950), pages 62-66, March.
    2. Zhong-Hui Shen & Jian-Jun Wang & Jian-Yong Jiang & Sharon X. Huang & Yuan-Hua Lin & Ce-Wen Nan & Long-Qing Chen & Yang Shen, 2019. "Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Chao Yuan & Yao Zhou & Yujie Zhu & Jiajie Liang & Shaojie Wang & Simin Peng & Yushu Li & Sang Cheng & Mingcong Yang & Jun Hu & Bo Zhang & Rong Zeng & Jinliang He & Qi Li, 2020. "Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Rui Wang & Yujie Zhu & Jing Fu & Mingcong Yang & Zhaoyu Ran & Junluo Li & Manxi Li & Jun Hu & Jinliang He & Qi Li, 2023. "Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rishi Gurnani & Stuti Shukla & Deepak Kamal & Chao Wu & Jing Hao & Christopher Kuenneth & Pritish Aklujkar & Ashish Khomane & Robert Daniels & Ajinkya A. Deshmukh & Yang Cao & Gregory Sotzing & Rampi , 2024. "AI-assisted discovery of high-temperature dielectrics for energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Minzheng Yang & Weibin Ren & Zenghui Jin & Erxiang Xu & Yang Shen, 2024. "Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xinhui Li & Bo Liu & Jian Wang & Shuxuan Li & Xin Zhen & Jiapeng Zhi & Junjie Zou & Bei Li & Zhonghui Shen & Xin Zhang & Shujun Zhang & Ce-Wen Nan, 2024. "High-temperature capacitive energy storage in polymer nanocomposites through nanoconfinement," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Rui Lu & Jian Wang & Tingzhi Duan & Tian-Yi Hu & Guangliang Hu & Yupeng Liu & Weijie Fu & Qiuyang Han & Yiqin Lu & Lu Lu & Shao-Dong Cheng & Yanzhu Dai & Dengwei Hu & Zhonghui Shen & Chun-Lin Jia & Ch, 2024. "Metadielectrics for high-temperature energy storage capacitors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Fan Xu & Yuke Li & Qing Zou & Yu Shuang He & Zijia Shen & Chen Li & Huijuan Zhang & Feipeng Wang & Jian Li & Yu Wang, 2022. "The electric field cavity array effect of 2D nano-sieves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Rui Wang & Yujie Zhu & Jing Fu & Mingcong Yang & Zhaoyu Ran & Junluo Li & Manxi Li & Jun Hu & Jinliang He & Qi Li, 2023. "Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Samuel-Soma Ajibade & Abdelhamid Zaidi & Asamh Saleh M. Al Luhayb & Anthonia Oluwatosin Adediran & Liton Chandra Voumik & Fazle Rabbi, 2023. "New Insights into the Emerging Trends Research of Machine and Deep Learning Applications in Energy Storage: A Bibliometric Analysis and Publication Trends," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 303-314, September.
    11. Kailun Zou & Peijia Bai & Kanghua Li & Fangyuan Luo & Jiajie Liang & Ling Lin & Rujun Ma & Qi Li & Shenglin Jiang & Qing Wang & Guangzu Zhang, 2024. "Electronic cooling and energy harvesting using ferroelectric polymer composites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53674-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.