IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50635-z.html
   My bibliography  Save this article

The global distribution and climate resilience of marine heterotrophic prokaryotes

Author

Listed:
  • Ryan F. Heneghan

    (Griffith University
    University of the Sunshine Coast
    Queensland University of Technology)

  • Jacinta Holloway-Brown

    (University of Adelaide, Kaurna Country)

  • Josep M. Gasol

    (Institut de Ciències del Mar-CSIC)

  • Gerhard J. Herndl

    (University of Vienna, Djerassiplatz 1
    Royal Netherlands Institute for Sea Research)

  • Xosé Anxelu G. Morán

    (CSIC))

  • Eric D. Galbraith

    (Universitat Autònoma de Barcelona
    McGill University)

Abstract

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr−1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.

Suggested Citation

  • Ryan F. Heneghan & Jacinta Holloway-Brown & Josep M. Gasol & Gerhard J. Herndl & Xosé Anxelu G. Morán & Eric D. Galbraith, 2024. "The global distribution and climate resilience of marine heterotrophic prokaryotes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50635-z
    DOI: 10.1038/s41467-024-50635-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50635-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50635-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher Costello & Ling Cao & Stefan Gelcich & Miguel Á. Cisneros-Mata & Christopher M. Free & Halley E. Froehlich & Christopher D. Golden & Gakushi Ishimura & Jason Maier & Ilan Macadam-Somer & T, 2020. "The future of food from the sea," Nature, Nature, vol. 588(7836), pages 95-100, December.
    2. Ryan F. Heneghan & Jason D. Everett & Julia L. Blanchard & Patrick Sykes & Anthony J. Richardson, 2023. "Climate-driven zooplankton shifts cause large-scale declines in food quality for fish," Nature Climate Change, Nature, vol. 13(5), pages 470-477, May.
    3. Derek P. Tittensor & Camilla Novaglio & Cheryl S. Harrison & Ryan F. Heneghan & Nicolas Barrier & Daniele Bianchi & Laurent Bopp & Andrea Bryndum-Buchholz & Gregory L. Britten & Matthias Büchner & Wil, 2021. "Next-generation ensemble projections reveal higher climate risks for marine ecosystems," Nature Climate Change, Nature, vol. 11(11), pages 973-981, November.
    4. Paul A. del Giorgio & Carlos M. Duarte, 2002. "Respiration in the open ocean," Nature, Nature, vol. 420(6914), pages 379-384, November.
    5. Thomas P. Smith & Thomas J. H. Thomas & Bernardo García-Carreras & Sofía Sal & Gabriel Yvon-Durocher & Thomas Bell & Samrāt Pawar, 2019. "Community-level respiration of prokaryotic microbes may rise with global warming," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Heneghan, Ryan F. & Everett, Jason D. & Sykes, Patrick & Batten, Sonia D. & Edwards, Martin & Takahashi, Kunio & Suthers, Iain M. & Blanchard, Julia L. & Richardson, Anthony J., 2020. "A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition," Ecological Modelling, Elsevier, vol. 435(C).
    7. David A Carozza & Daniele Bianchi & Eric D Galbraith, 2017. "Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angus Atkinson & Axel G. Rossberg & Ursula Gaedke & Gary Sprules & Ryan F. Heneghan & Stratos Batziakas & Maria Grigoratou & Elaine Fileman & Katrin Schmidt & Constantin Frangoulis, 2024. "Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joshua E. Cinner & Iain R. Caldwell & Lauric Thiault & John Ben & Julia L. Blanchard & Marta Coll & Amy Diedrich & Tyler D. Eddy & Jason D. Everett & Christian Folberth & Didier Gascuel & Jerome Guiet, 2022. "Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jingyi Liu & Feng Gui & Qian Zhou & Huiwen Cai & Kaida Xu & Sheng Zhao, 2023. "Carbon Footprint of a Large Yellow Croaker Mariculture Models Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    4. Sara Apresentação & Mafalda Rangel & Assunção Cristas, 2024. "Towards Sustainability: A Framework for Evaluating Portuguese Small-Scale Fisheries," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
    5. Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
    6. Cesc Gordó-Vilaseca & Mark John Costello & Marta Coll & Alexander Jüterbock & Henning Reiss & Fabrice Stephenson, 2024. "Future trends of marine fish biomass distributions from the North Sea to the Barents Sea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ling Cao & Benjamin S. Halpern & Max Troell & Rebecca Short & Cong Zeng & Ziyu Jiang & Yue Liu & Chengxuan Zou & Chunyu Liu & Shurong Liu & Xiangwei Liu & William W. L. Cheung & Richard S. Cottrell & , 2023. "Vulnerability of blue foods to human-induced environmental change," Nature Sustainability, Nature, vol. 6(10), pages 1186-1198, October.
    8. Xiao Liang & Shilong Yang & Zhichao Lou & Abdelrahman Ali, 2024. "The Impact of Japan’s Discharge of Nuclear-Contaminated Water on Aquaculture Production, Trade, and Food Security in China and Japan," Sustainability, MDPI, vol. 16(3), pages 1-15, February.
    9. Kristie L. Ebi & Frances Harris & Giles B. Sioen & Chadia Wannous & Assaf Anyamba & Peng Bi & Melanie Boeckmann & Kathryn Bowen & Guéladio Cissé & Purnamita Dasgupta & Gabriel O. Dida & Alexandros Gas, 2020. "Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development," IJERPH, MDPI, vol. 17(23), pages 1-25, November.
    10. Le, Hanh-My & Ludwig, Markus, 2022. "The Salinization of Agricultural Hubs: Impacts and Adjustments to Intensifying Saltwater Intrusion in the Mekong Delta," VfS Annual Conference 2022 (Basel): Big Data in Economics 264102, Verein für Socialpolitik / German Economic Association.
    11. Barrett, Luke T. & Theuerkauf, Seth J. & Rose, Julie M. & Alleway, Heidi K. & Bricker, Suzanne B. & Parker, Matt & Petrolia, Daniel R. & Jones, Robert C., 2022. "Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits," Ecosystem Services, Elsevier, vol. 53(C).
    12. Kalyan Annamalai, 2024. "Breathing Planet Earth: Analysis of Keeling’s Data on CO 2 and O 2 with Respiratory Quotient (RQ), Part II: Energy-Based Global RQ and CO 2 Budget," Energies, MDPI, vol. 17(8), pages 1-46, April.
    13. Chunzhu Wei & Mo Zhang & Wei Chen & Yong Ge & Daoping Wang & Die Zhang & Desheng Xue & Qiuming Cheng & Changxiu Cheng & Wenguang Zhang, 2023. "After the pandemic: the global seafood trade market forecasts in 2030," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    14. Zetina-Rejón, Manuel J. & Cabrera-Neri, Erika & López-Ibarra, Gladis A. & Arcos-Huitrón, N. Enrique & Christensen, Villy, 2015. "Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis," Ecological Modelling, Elsevier, vol. 313(C), pages 314-324.
    15. Piotr Eljasik & Remigiusz Panicz & Małgorzata Sobczak & Jacek Sadowski, 2022. "Key Performance Indicators of Common Carp ( Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    16. Valle, Mireia & Ramírez-Romero, Eduardo & Ibaibarriaga, Leire & Citores, Leire & Fernandes-Salvador, Jose A. & Chust, Guillem, 2024. "Pan-Atlantic 3D distribution model incorporating water column for commercial fish," Ecological Modelling, Elsevier, vol. 490(C).
    17. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Ecological Economics, Elsevier, vol. 217(C).
    19. Rector, M.E. & Filgueira, R. & Grant, J., 2021. "Ecosystem services in salmon aquaculture sustainability schemes," Ecosystem Services, Elsevier, vol. 52(C).
    20. Chen, Bingzhang, 2022. "Thermal diversity affects community responses to warming," Ecological Modelling, Elsevier, vol. 464(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50635-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.