IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50510-x.html
   My bibliography  Save this article

A topological mechanism for robust and efficient global oscillations in biological networks

Author

Listed:
  • Chongbin Zheng

    (Rice University
    Rice University)

  • Evelyn Tang

    (Rice University
    Rice University)

Abstract

Long and stable timescales are often observed in complex biochemical networks, such as in emergent oscillations. How these robust dynamics persist remains unclear, given the many stochastic reactions and shorter time scales demonstrated by underlying components. We propose a topological model that produces long oscillations around the network boundary, reducing the system dynamics to a lower-dimensional current in a robust manner. Using this to model KaiC, which regulates the circadian rhythm in cyanobacteria, we compare the coherence of oscillations to that in other KaiC models. Our topological model localizes currents on the system edge, with an efficient regime of simultaneously increased precision and decreased cost. Further, we introduce a new predictor of coherence from the analysis of spectral gaps, and show that our model saturates a global thermodynamic bound. Our work presents a new mechanism and parsimonious description for robust emergent oscillations in complex biological networks.

Suggested Citation

  • Chongbin Zheng & Evelyn Tang, 2024. "A topological mechanism for robust and efficient global oscillations in biological networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50510-x
    DOI: 10.1038/s41467-024-50510-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50510-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50510-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel E. Moore, 2010. "The birth of topological insulators," Nature, Nature, vol. 464(7286), pages 194-198, March.
    2. Greg J Stephens & Bethany Johnson-Kerner & William Bialek & William S Ryu, 2008. "Dimensionality and Dynamics in the Behavior of C. elegans," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    3. Tetsuya Mori & Shogo Sugiyama & Mark Byrne & Carl Hirschie Johnson & Takayuki Uchihashi & Toshio Ando, 2018. "Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    5. Arvind Murugan & Suriyanarayanan Vaikuntanathan, 2017. "Topologically protected modes in non-equilibrium stochastic systems," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    6. Xu Han & Dongliang Zhang & Lu Hong & Daqi Yu & Zhaolong Wu & Tian Yang & Michael Rust & Yuhai Tu & Qi Ouyang, 2023. "Determining subunit-subunit interaction from statistics of cryo-EM images: observation of nearest-neighbor coupling in a circadian clock protein complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benoît Mahault & Evelyn Tang & Ramin Golestanian, 2022. "A topological fluctuation theorem," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    4. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    6. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    7. Stanislav Nagy & Marc Goessling & Yali Amit & David Biron, 2015. "A Generative Statistical Algorithm for Automatic Detection of Complex Postures," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-23, October.
    8. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    9. Eva Arianna Aurelia Pogna & Leonardo Viti & Antonio Politano & Massimo Brambilla & Gaetano Scamarcio & Miriam Serena Vitiello, 2021. "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Chang Woo Ji & Young-Seuk Park & Yongde Cui & Hongzhu Wang & Ihn-Sil Kwak & Tae-Soo Chon, 2020. "Analyzing the Response Behavior of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) to Different Concentrations of Copper Sulfate Based on Line Body Shape Detection and a Recurrent Self-Organizing ," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    11. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    13. Ziyan Huang & Myung Chung & Kentaro Tao & Akiyuki Watarai & Mu-Yun Wang & Hiroh Ito & Teruhiro Okuyama, 2023. "Ventromedial prefrontal neurons represent self-states shaped by vicarious fear in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. David Kappel & Bernhard Nessler & Wolfgang Maass, 2014. "STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-22, March.
    15. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Takafumi Arakaki & G Barello & Yashar Ahmadian, 2019. "Inferring neural circuit structure from datasets of heterogeneous tuning curves," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-38, April.
    17. Alexandra Busch & Megan Roussy & Rogelio Luna & Matthew L. Leavitt & Maryam H. Mofrad & Roberto A. Gulli & Benjamin Corrigan & Ján Mináč & Adam J. Sachs & Lena Palaniyappan & Lyle Muller & Julio C. Ma, 2024. "Neuronal activation sequences in lateral prefrontal cortex encode visuospatial working memory during virtual navigation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Arno Onken & Jue Xie & Stefano Panzeri & Camillo Padoa-Schioppa, 2019. "Categorical encoding of decision variables in orbitofrontal cortex," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
    19. Márton Albert Hajnal & Duy Tran & Zsombor Szabó & Andrea Albert & Karen Safaryan & Michael Einstein & Mauricio Vallejo Martelo & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2024. "Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex in mice during decision making," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50510-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.