IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004517.html
   My bibliography  Save this article

A Generative Statistical Algorithm for Automatic Detection of Complex Postures

Author

Listed:
  • Stanislav Nagy
  • Marc Goessling
  • Yali Amit
  • David Biron

Abstract

This paper presents a method for automated detection of complex (non-self-avoiding) postures of the nematode Caenorhabditis elegans and its application to analyses of locomotion defects. Our approach is based on progressively detailed statistical models that enable detection of the head and the body even in cases of severe coilers, where data from traditional trackers is limited. We restrict the input available to the algorithm to a single digitized frame, such that manual initialization is not required and the detection problem becomes embarrassingly parallel. Consequently, the proposed algorithm does not propagate detection errors and naturally integrates in a “big data” workflow used for large-scale analyses. Using this framework, we analyzed the dynamics of postures and locomotion of wild-type animals and mutants that exhibit severe coiling phenotypes. Our approach can readily be extended to additional automated tracking tasks such as tracking pairs of animals (e.g., for mating assays) or different species.Author Summary: The roundworm Caenorhabditis elegans is a widely used model organism. Its locomotion, for instance, enables the study of genetic and cellular mechanisms that underlie behavior and may be broadly conserved. Characterizing C. elegans locomotion requires identifying its body posture and tracking how posture changes with time. Existing machine vision approaches have greatly aided this effort. However, they have been limited in cases where the body of the animal curved strongly such that one part of the animal rested or slid against another part. We present a method for automated detection of such complex body postures and its application to the analysis of locomotion. At the core of our method are progressively detailed statistical models of the shape of the animal. These models enable us to assess the probability that a given image contains a suggested posture. Our approach does not require manual initialization and can be readily parallelized for large-scale applications. We used our approach to analyze locomotion in mutants that severely exaggerate their body bends, called coilers. This approach can readily be extended to additional automated tracking tasks such as pairs of interacting roundworms or different organisms.

Suggested Citation

  • Stanislav Nagy & Marc Goessling & Yali Amit & David Biron, 2015. "A Generative Statistical Algorithm for Automatic Detection of Complex Postures," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-23, October.
  • Handle: RePEc:plo:pcbi00:1004517
    DOI: 10.1371/journal.pcbi.1004517
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004517
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004517&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Greg J Stephens & Bethany Johnson-Kerner & William Bialek & William S Ryu, 2008. "Dimensionality and Dynamics in the Behavior of C. elegans," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    2. Shangbang Gao & Lin Xie & Taizo Kawano & Michelle D. Po & Jennifer K. Pirri & Sihui Guan & Mark J. Alkema & Mei Zhen, 2015. "The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion," Nature Communications, Nature, vol. 6(1), pages 1-11, May.
    3. Shangbang Gao & Lin Xie & Taizo Kawano & Michelle D. Po & Jennifer K. Pirri & Sihui Guan & Mark J. Alkema & Mei Zhen, 2015. "Correction: Corrigendum: The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elke Braun & Bart Geurten & Martin Egelhaaf, 2010. "Identifying Prototypical Components in Behaviour Using Clustering Algorithms," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-15, February.
    2. Christophe Restif & Carolina Ibáñez-Ventoso & Mehul M Vora & Suzhen Guo & Dimitris Metaxas & Monica Driscoll, 2014. "CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    3. Chang Woo Ji & Young-Seuk Park & Yongde Cui & Hongzhu Wang & Ihn-Sil Kwak & Tae-Soo Chon, 2020. "Analyzing the Response Behavior of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) to Different Concentrations of Copper Sulfate Based on Line Body Shape Detection and a Recurrent Self-Organizing ," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    4. Markus Reischl & Mazin Jouda & Neil MacKinnon & Erwin Fuhrer & Natalia Bakhtina & Andreas Bartschat & Ralf Mikut & Jan G Korvink, 2019. "Motion prediction enables simulated MR-imaging of freely moving model organisms," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-16, December.
    5. Sepideh Bazazi & Frederic Bartumeus & Joseph J Hale & Iain D Couzin, 2012. "Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-10, May.
    6. Steffen Werner & Jochen C Rink & Ingmar H Riedel-Kruse & Benjamin M Friedrich, 2014. "Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-21, November.
    7. Chongbin Zheng & Evelyn Tang, 2024. "A topological mechanism for robust and efficient global oscillations in biological networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jeffrey P Nguyen & Ashley N Linder & George S Plummer & Joshua W Shaevitz & Andrew M Leifer, 2017. "Automatically tracking neurons in a moving and deforming brain," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-19, May.
    9. Laetitia Hebert & Tosif Ahamed & Antonio C Costa & Liam O’Shaughnessy & Greg J Stephens, 2021. "WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-20, April.
    10. Li-Chun Lin & Han-Sheng Chuang, 2017. "Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.