IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37781-6.html
   My bibliography  Save this article

What the geological past can tell us about the future of the ocean’s twilight zone

Author

Listed:
  • Katherine A. Crichton

    (Cardiff University
    University of Exeter)

  • Jamie D. Wilson

    (University of Bristol
    University of Liverpool)

  • Andy Ridgwell

    (University of California)

  • Flavia Boscolo-Galazzo

    (Cardiff University
    University of Bremen)

  • Eleanor H. John

    (Cardiff University)

  • Bridget S. Wade

    (University College London)

  • Paul N. Pearson

    (Cardiff University)

Abstract

Paleontological reconstructions of plankton community structure during warm periods of the Cenozoic (last 66 million years) reveal that deep-dwelling ‘twilight zone’ (200–1000 m) plankton were less abundant and diverse, and lived much closer to the surface, than in colder, more recent climates. We suggest that this is a consequence of temperature’s role in controlling the rate that sinking organic matter is broken down and metabolized by bacteria, a process that occurs faster at warmer temperatures. In a warmer ocean, a smaller fraction of organic matter reaches the ocean interior, affecting food supply and dissolved oxygen availability at depth. Using an Earth system model that has been evaluated against paleo observations, we illustrate how anthropogenic warming may impact future carbon cycling and twilight zone ecology. Our findings suggest that significant changes are already underway, and without strong emissions mitigation, widespread ecological disruption in the twilight zone is likely by 2100, with effects spanning millennia thereafter.

Suggested Citation

  • Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37781-6
    DOI: 10.1038/s41467-023-37781-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37781-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37781-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adrian Martin & Philip Boyd & Ken Buesseler & Ivona Cetinic & Hervé Claustre & Sari Giering & Stephanie Henson & Xabier Irigoien & Iris Kriest & Laurent Memery & Carol Robinson & Grace Saba & Richard , 2020. "The oceans’ twilight zone must be studied now, before it is too late," Nature, Nature, vol. 580(7801), pages 26-28, April.
    2. Jörg Pross & Lineth Contreras & Peter K. Bijl & David R. Greenwood & Steven M. Bohaty & Stefan Schouten & James A. Bendle & Ursula Röhl & Lisa Tauxe & J. Ian Raine & Claire E. Huck & Tina van de Flier, 2012. "Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch," Nature, Nature, vol. 488(7409), pages 73-77, August.
    3. E. Anagnostou & E. H. John & T. L. Babila & P. F. Sexton & A. Ridgwell & D. J. Lunt & P. N. Pearson & T. B. Chalk & R. D. Pancost & G. L. Foster, 2020. "Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Michael E. Dillon & George Wang & Raymond B. Huey, 2010. "Global metabolic impacts of recent climate warming," Nature, Nature, vol. 467(7316), pages 704-706, October.
    5. Paul N. Pearson & Peter W. Ditchfield & Joyce Singano & Katherine G. Harcourt-Brown & Christopher J. Nicholas & Richard K. Olsson & Nicholas J. Shackleton & Mike A. Hall, 2001. "Erratum: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs," Nature, Nature, vol. 414(6862), pages 470-470, November.
    6. Eleni Anagnostou & Eleanor H. John & Kirsty M. Edgar & Gavin L. Foster & Andy Ridgwell & Gordon N. Inglis & Richard D. Pancost & Daniel J. Lunt & Paul N. Pearson, 2016. "Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate," Nature, Nature, vol. 533(7603), pages 380-384, May.
    7. Ann E. Holbourn & Wolfgang Kuhnt & Steven C. Clemens & Karlos G. D. Kochhann & Janika Jöhnck & Julia Lübbers & Nils Andersen, 2018. "Late Miocene climate cooling and intensification of southeast Asian winter monsoon," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    8. James C. Zachos & Gerald R. Dickens & Richard E. Zeebe, 2008. "An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics," Nature, Nature, vol. 451(7176), pages 279-283, January.
    9. Daniel G. Boyce & Marlon R. Lewis & Boris Worm, 2010. "Global phytoplankton decline over the past century," Nature, Nature, vol. 466(7306), pages 591-596, July.
    10. Elvira S. Poloczanska & Christopher J. Brown & William J. Sydeman & Wolfgang Kiessling & David S. Schoeman & Pippa J. Moore & Keith Brander & John F. Bruno & Lauren B. Buckley & Michael T. Burrows & C, 2013. "Global imprint of climate change on marine life," Nature Climate Change, Nature, vol. 3(10), pages 919-925, October.
    11. Diego R. Barneche & Chris J. Hulatt & Matteo Dossena & Daniel Padfield & Guy Woodward & Mark Trimmer & Gabriel Yvon-Durocher, 2021. "Warming impairs trophic transfer efficiency in a long-term field experiment," Nature, Nature, vol. 592(7852), pages 76-79, April.
    12. Paul N. Pearson & Peter W. Ditchfield & Joyce Singano & Katherine G. Harcourt-Brown & Christopher J. Nicholas & Richard K. Olsson & Nicholas J. Shackleton & Mike A. Hall, 2001. "Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs," Nature, Nature, vol. 413(6855), pages 481-487, October.
    13. Lukas Jonkers & Helmut Hillebrand & Michal Kucera, 2019. "Global change drives modern plankton communities away from the pre-industrial state," Nature, Nature, vol. 570(7761), pages 372-375, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Dallai & Zachary D. Sharp, 2024. "A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Ian Eisenman & Kyle C. Armour, 2024. "The radiative feedback continuum from Snowball Earth to an ice-free hothouse," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2012. "Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model," Ecological Modelling, Elsevier, vol. 244(C), pages 132-147.
    4. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    6. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    7. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    8. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    9. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    10. Andrew J Allyn & Michael A Alexander & Bradley S Franklin & Felix Massiot-Granier & Andrew J Pershing & James D Scott & Katherine E Mills, 2020. "Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    11. Tahmina Ajmal & Fazeel Mohammed & Martin S. Goodchild & Jipsy Sudarsanan & Sarah Halse, 2024. "Mitigating the Impact of Harmful Algal Blooms on Aquaculture Using Technological Interventions: Case Study on a South African Farm," Sustainability, MDPI, vol. 16(9), pages 1-15, April.
    12. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    13. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    14. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    15. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    16. Cheung, William W.L. & Jones, Miranda C. & Reygondeau, Gabriel & Stock, Charles A. & Lam, Vicky W.Y. & Frölicher, Thomas L., 2016. "Structural uncertainty in projecting global fisheries catches under climate change," Ecological Modelling, Elsevier, vol. 325(C), pages 57-66.
    17. Federica Manca & Lisandro Benedetti-Cecchi & Corey J. A. Bradshaw & Mar Cabeza & Camilla Gustafsson & Alf M. Norkko & Tomas V. Roslin & David N. Thomas & Lydia White & Giovanni Strona, 2024. "Projected loss of brown macroalgae and seagrasses with global environmental change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Achwak Benazza & Jonathan Selleslagh & Elsa Breton & Khalef Rabhi & Vincent Cornille & Mahmoud Bacha & Eric Lecuyer & Rachid Amara, 2015. "Environmental Control on Fish and Macrocrustacean Spring Community-Structure, on an Intertidal Sandy Beach," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-19, January.
    19. Isabel Sauermilch & Joanne M. Whittaker & Andreas Klocker & David R. Munday & Katharina Hochmuth & Peter K. Bijl & Joseph H. LaCasce, 2021. "Gateway-driven weakening of ocean gyres leads to Southern Ocean cooling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Gretta Pecl & Tim Ward & Zoë Doubleday & Steven Clarke & Jemery Day & Cameron Dixon & Stewart Frusher & Philip Gibbs & Alistair Hobday & Neil Hutchinson & Sarah Jennings & Keith Jones & Xiaoxu Li & Da, 2014. "Rapid assessment of fisheries species sensitivity to climate change," Climatic Change, Springer, vol. 127(3), pages 505-520, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37781-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.