IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16931-0.html
   My bibliography  Save this article

Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone

Author

Listed:
  • Sébastien Moreau

    (Norwegian Polar Institute, Fram Centre
    University of Tasmania)

  • Philip W. Boyd

    (University of Tasmania)

  • Peter G. Strutton

    (University of Tasmania
    University of Tasmania)

Abstract

In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice zone (SIZ). These blooms have a range of fates including physical advection, downward carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the production of chlorophyll—based on nitrate depletion—compared with measured chlorophyll. Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the annually-averaged losses (169 mg C m−2 d−1), and phytodetritus POC export comprises ~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phytoplankton fate throughout the Southern Ocean SIZ.

Suggested Citation

  • Sébastien Moreau & Philip W. Boyd & Peter G. Strutton, 2020. "Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16931-0
    DOI: 10.1038/s41467-020-16931-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16931-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16931-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastien Moreau & Tore Hattermann & Laura Steur & Hanna M. Kauko & Heidi Ahonen & Murat Ardelan & Philipp Assmy & Melissa Chierici & Sebastien Descamps & Tilman Dinter & Tone Falkenhaug & Agneta Fran, 2023. "Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Afonso Ferreira & Carlos R. B. Mendes & Raul R. Costa & Vanda Brotas & Virginia M. Tavano & Catarina V. Guerreiro & Eduardo R. Secchi & Ana C. Brito, 2024. "Climate change is associated with higher phytoplankton biomass and longer blooms in the West Antarctic Peninsula," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kenza Himmich & Martin Vancoppenolle & Gurvan Madec & Jean-Baptiste Sallée & Paul R. Holland & Marion Lebrun, 2023. "Drivers of Antarctic sea ice advance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Léo Lacour & Joan Llort & Nathan Briggs & Peter G. Strutton & Philip W. Boyd, 2023. "Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16931-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.