IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50103-8.html
   My bibliography  Save this article

Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain

Author

Listed:
  • Rotem Botvinik-Nezer

    (The Hebrew University of Jerusalem
    Dartmouth College)

  • Bogdan Petre

    (Dartmouth College)

  • Marta Ceko

    (University of Colorado Boulder)

  • Martin A. Lindquist

    (Johns Hopkins University)

  • Naomi P. Friedman

    (University of Colorado Boulder
    University of Colorado Boulder)

  • Tor D. Wager

    (Dartmouth College)

Abstract

Drug treatments for pain often do not outperform placebo, and a better understanding of placebo mechanisms is needed to improve treatment development and clinical practice. In a large-scale fMRI study (N = 392) with pre-registered analyses, we tested whether placebo analgesic treatment modulates nociceptive processes, and whether its effects generalize from conditioned to unconditioned pain modalities. Placebo treatment caused robust analgesia in conditioned thermal pain that generalized to unconditioned mechanical pain. However, placebo did not decrease pain-related fMRI activity in brain measures linked to nociceptive pain, including the Neurologic Pain Signature (NPS) and spinothalamic pathway regions, with strong support for null effects in Bayes Factor analyses. In addition, surprisingly, placebo increased activity in some spinothalamic regions for unconditioned mechanical pain. In contrast, placebo reduced activity in a neuromarker associated with higher-level contributions to pain, the Stimulus Intensity Independent Pain Signature (SIIPS), and affected activity in brain regions related to motivation and value, in both pain modalities. Individual differences in behavioral analgesia were correlated with neural changes in both modalities. Our results indicate that cognitive and affective processes primarily drive placebo analgesia, and show the potential of neuromarkers for separating treatment influences on nociception from influences on evaluative processes.

Suggested Citation

  • Rotem Botvinik-Nezer & Bogdan Petre & Marta Ceko & Martin A. Lindquist & Naomi P. Friedman & Tor D. Wager, 2024. "Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50103-8
    DOI: 10.1038/s41467-024-50103-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50103-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50103-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Choong-Wan Woo & Liane Schmidt & Anjali Krishnan & Marieke Jepma & Mathieu Roy & Martin A. Lindquist & Lauren Y. Atlas & Tor D. Wager, 2017. "Quantifying cerebral contributions to pain beyond nociception," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    2. Leonie Koban & Marieke Jepma & Marina López-Solà & Tor D. Wager, 2019. "Different brain networks mediate the effects of social and conditioned expectations on pain," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Scott Marek & Brenden Tervo-Clemmens & Finnegan J. Calabro & David F. Montez & Benjamin P. Kay & Alexander S. Hatoum & Meghan Rose Donohue & William Foran & Ryland L. Miller & Timothy J. Hendrickson &, 2022. "Reproducible brain-wide association studies require thousands of individuals," Nature, Nature, vol. 603(7902), pages 654-660, March.
    4. Scott Marek & Brenden Tervo-Clemmens & Finnegan J. Calabro & David F. Montez & Benjamin P. Kay & Alexander S. Hatoum & Meghan Rose Donohue & William Foran & Ryland L. Miller & Timothy J. Hendrickson &, 2022. "Publisher Correction: Reproducible brain-wide association studies require thousands of individuals," Nature, Nature, vol. 605(7911), pages 11-11, May.
    5. Flavia Mancini & Suyi Zhang & Ben Seymour, 2022. "Computational and neural mechanisms of statistical pain learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Tamas Spisak & Ulrike Bingel & Tor D. Wager, 2023. "Multivariate BWAS can be replicable with moderate sample sizes," Nature, Nature, vol. 615(7951), pages 4-7, March.
    7. G. N. Wilkinson & C. E. Rogers, 1973. "Symbolic Description of Factorial Models for Analysis of Variance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(3), pages 392-399, November.
    8. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    9. Rotem Botvinik-Nezer & Felix Holzmeister & Colin F. Camerer & Anna Dreber & Juergen Huber & Magnus Johannesson & Michael Kirchler & Roni Iwanir & Jeanette A. Mumford & R. Alison Adcock & Paolo Avesani, 2020. "Variability in the analysis of a single neuroimaging dataset by many teams," Nature, Nature, vol. 582(7810), pages 84-88, June.
    10. Etienne Vachon-Presseau & Sara E. Berger & Taha B. Abdullah & Lejian Huang & Guillermo A. Cecchi & James W. Griffith & Thomas J. Schnitzer & A. Vania Apkarian, 2018. "Brain and psychological determinants of placebo pill response in chronic pain patients," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Bob Bramson & Sjoerd Meijer & Annelies Nuland & Ivan Toni & Karin Roelofs, 2023. "Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Feng Zhou & Weihua Zhao & Ziyu Qi & Yayuan Geng & Shuxia Yao & Keith M. Kendrick & Tor D. Wager & Benjamin Becker, 2021. "A distributed fMRI-based signature for the subjective experience of fear," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Zurrin, Riley & Wong, Samantha Tze Sum & Roes, Meighen M. & Percival, Chantal M. & Chinchani, Abhijit & Arreaza, Leo & Kusi, Mavis & Momeni, Ava & Rasheed, Maiya & Mo, Zhaoyi & Goghari, Vina M. & Wood, 2024. "Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence," Intelligence, Elsevier, vol. 103(C).
    5. Sadri, Arash, 2022. "The Ultimate Cause of the “Reproducibility Crisis”: Reductionist Statistics," MetaArXiv yxba5, Center for Open Science.
    6. Audrey C. Luo & Valerie J. Sydnor & Adam Pines & Bart Larsen & Aaron F. Alexander-Bloch & Matthew Cieslak & Sydney Covitz & Andrew A. Chen & Nathalia Bianchini Esper & Eric Feczko & Alexandre R. Franc, 2024. "Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Shile Qi & Jing Sui & Godfrey Pearlson & Juan Bustillo & Nora I. Perrone-Bizzozero & Peter Kochunov & Jessica A. Turner & Zening Fu & Wei Shao & Rongtao Jiang & Xiao Yang & Jingyu Liu & Yuhui Du & Jia, 2022. "Derivation and utility of schizophrenia polygenic risk associated multimodal MRI frontotemporal network," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Schubert, Anna-Lena & Löffler, Christoph & Wiebel, Clara & Kaulhausen, Florian & Baudson, Tanja Gabriele, 2024. "Don't waste your time measuring intelligence: Further evidence for the validity of a three-minute speeded reasoning test," Intelligence, Elsevier, vol. 102(C).
    9. Suhwan Gim & Dong Hee Lee & Sungwoo Lee & Choong-Wan Woo, 2024. "Interindividual differences in pain can be explained by fMRI, sociodemographic, and psychological factors," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    10. Arielle S. Keller & Adam R. Pines & Sheila Shanmugan & Valerie J. Sydnor & Zaixu Cui & Maxwell A. Bertolero & Ran Barzilay & Aaron F. Alexander-Bloch & Nora Byington & Andrew Chen & Gregory M. Conan &, 2023. "Personalized functional brain network topography is associated with individual differences in youth cognition," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Christoph Huber & Christian König-Kersting & Matteo M. Marini, 2022. "Experimenting with Financial Professionals," Working Papers 2022-07, Faculty of Economics and Statistics, Universität Innsbruck, revised Jun 2024.
    12. Nick Huntington‐Klein & Andreu Arenas & Emily Beam & Marco Bertoni & Jeffrey R. Bloem & Pralhad Burli & Naibin Chen & Paul Grieco & Godwin Ekpe & Todd Pugatch & Martin Saavedra & Yaniv Stopnitzky, 2021. "The influence of hidden researcher decisions in applied microeconomics," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 944-960, July.
    13. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Payne, Roger W., 1998. "Design keys, pseudo-factors and general balance," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 217-229, December.
    15. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Dreber, Anna & Johannesson, Magnus, 2023. "A framework for evaluating reproducibility and replicability in economics," Ruhr Economic Papers 1055, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    18. M. Lumaca & P. E. Keller & G. Baggio & V. Pando-Naude & C. J. Bajada & M. A. Martinez & J. H. Hansen & A. Ravignani & N. Joe & P. Vuust & K. Vulić & K. Sandberg, 2024. "Frontoparietal network topology as a neural marker of musical perceptual abilities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Christophe Pérignon & Olivier Akmansoy & Christophe Hurlin & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johanneson & Michael Kirchler & Albert Menkveld & Michael Razen & Utz Weitzel, 2022. "Reproducibility of Empirical Results: Evidence from 1,000 Tests in Finance," Working Papers hal-03810013, HAL.
    20. Quirin Gehmacher & Juliane Schubert & Fabian Schmidt & Thomas Hartmann & Patrick Reisinger & Sebastian Rösch & Konrad Schwarz & Tzvetan Popov & Maria Chait & Nathan Weisz, 2024. "Eye movements track prioritized auditory features in selective attention to natural speech," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50103-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.